Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (5): 769-778.DOI: 10.19894/j.issn.1000-0518.210115
• Full Papers • Previous Articles Next Articles
Yi-Xin XU, Shuang WANG, Jing QUAN, Wan-Ting GAO, Tian-Qun SONG, Mei YANG()
Received:
2021-03-15
Accepted:
2021-08-28
Published:
2022-05-01
Online:
2022-05-24
Contact:
Mei YANG
About author:
yangmeils@163.comSupported by:
CLC Number:
Yi-Xin XU, Shuang WANG, Jing QUAN, Wan-Ting GAO, Tian-Qun SONG, Mei YANG. Preparation of Molybdenum Disulfide Quantum Dots/Reduced Graphene Oxide Composites and Their Photocatalytic Degradation of Organic Dyes, Tetracyclines and Cr(VI)[J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 769-778.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210115
Fig.7 Photocatalytic degradation of RhB, MB, TC and Cr(Ⅵ) with different amount of MoS2 QDs/rGO (A - D) and at different reaction system pH values (E - H)
目标污染物 Samples | 动力学反应级数 Reaction order | 回归方程 Regression equation | 相关系数 r |
---|---|---|---|
0 | ρt =-0.0118t+0.936 | 0.981 | |
RhB | 1 | ln ρt =-0.0320t+0.163 | 0.990 |
2 | 1/ρt =0.136t-0.794 | 0.903 | |
0 | ρt =-0.0119t+0.872 | 0.950 | |
MB | 1 | ln ρt =-0.0387t+0.104 | 0.997 |
2 | 1/ρt =0.231t-1.91 | 0.925 | |
0 | ρt =-0.0062t+0.766 | 0.976 | |
TC | 1 | ln ρt =-0.0119t-0.236 | 0.997 |
2 | 1/ρt =0.0246t+1.17 | 0.995 | |
0 | ρt =-0.0088t+0.656 | 0.958 | |
Cr(Ⅵ) | 1 | ln ρt =-0.0372t-0.178 | 0.996 |
2 | 1/ρt =0.281t-2.30 | 0.910 |
Table 1 The photocatalytic degradation kinetics of RhB, MB, TC and Cr(Ⅵ)
目标污染物 Samples | 动力学反应级数 Reaction order | 回归方程 Regression equation | 相关系数 r |
---|---|---|---|
0 | ρt =-0.0118t+0.936 | 0.981 | |
RhB | 1 | ln ρt =-0.0320t+0.163 | 0.990 |
2 | 1/ρt =0.136t-0.794 | 0.903 | |
0 | ρt =-0.0119t+0.872 | 0.950 | |
MB | 1 | ln ρt =-0.0387t+0.104 | 0.997 |
2 | 1/ρt =0.231t-1.91 | 0.925 | |
0 | ρt =-0.0062t+0.766 | 0.976 | |
TC | 1 | ln ρt =-0.0119t-0.236 | 0.997 |
2 | 1/ρt =0.0246t+1.17 | 0.995 | |
0 | ρt =-0.0088t+0.656 | 0.958 | |
Cr(Ⅵ) | 1 | ln ρt =-0.0372t-0.178 | 0.996 |
2 | 1/ρt =0.281t-2.30 | 0.910 |
1 | ANWER H, MAHMOOD A, LEE J, et al. Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges[J]. Nano Res, 2019,12(5): 955-972. |
2 | 韦之栋, 刘军营, 上官文峰. 抗生素废水中的光催化:污染物降解和产氢综述[J]. 催化学报, 2020, 41(10): 1440-1450. |
WEI Z D, LIU J Y, SHANGGUAN W F. A review on photocatalysis in antibiotic wastewater: pollutant degradation and hydrogen production[J].Chinese J Catal, 2020,41(10): 1440-1450. | |
3 | CHEN Z T, LIU Y Y, ZHANG W J, et al. Fabrication of multilayered MoS2 coated raspberry‑like TiO2 on rGO with enhanced photocatalytic reduction of Cr(VI)[J]. J Mater Sci: Mater Electron, 2019, 30: 12901-12910. |
4 | 唐飞, 杜多勤, 谭云妃, 等. 正六棱型MoO3- x微米柱光催化剂的制备及性能[J]. 应用化学, 2021, 38(1): 92-98. |
TANG F, DU D Q, TAN Y F, et al. Preparation and characterization of MoO3- x hexagonal microrods as high-efficiency photocatalysts[J]. Chinese J Appl Chem, 2021, 38(1): 92-98. | |
5 | 马贺成, 刘建军, 于迎春, 等. 二维石墨相氮化碳纳米片的制备及其在光催化领域的研究进展[J]. 应用化学, 2019, 36(3): 259-268. |
MA H C, LIU J J, YU Y C, et al. Research progress in preparation and photocatalysis of two-dimensional graphitic carbon nitride nanosheets[J]. Chinese J Appl Chem, 2019, 36(3): 259-268. | |
6 | 张春华, 赵晓波, 李跃军, 等. (BiO)2CO3-Bi-TiO2复合纳米纤维制备及其光催化降解抗生素[J]. 应用化学, 2021, 38(1): 99-106. |
ZHANG C H, ZHAO X B, LI Y J, et al. Preparation of (BiO)2CO3-Bi-TiO2 composite nanofibers and its photocatalytic degradation of antibiotics[J]. Chinese J Appl Chem, 2021, 38(1): 99-106. | |
7 | WU M H, LI L, LIU N, et al. Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: a review[J]. Process Saf Environ, 2018, 118: 40-58. |
8 | ARUL N S, NITHYA V D. Molybdenum disulfide quantum dots: synthesis and applications[J]. RSC Adv, 2016, 6(70): 65670-65682. |
9 | CHANG K, MEI Z W, WANG T, et al. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation[J].ACS Nano,2014, 8(7): 7078-7087. |
10 | GAO W Y, WANG M Q, RAN C X, et al. Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties[J]. Chem Commun, 2015, 51(9): 1709-1712. |
11 | CUI Y, ZHANG R, ZHANG J, et al. Highly active and stable electrocatalytic hydrogen evolution catalyzed by nickel, iron doped cobalt disulfide@reduced graphene oxide nanohybrid electrocatalysts[J]. Mater Today Energy, 2018, 7: 44-50 |
12 | HOSSEINI S A, BABAEI S. Graphene oxide/zinc oxide (GO/ZnO) nanocomposite as a superior photocatalyst for degradation of methylene blue (MB)-process modeling by response surface methodology (RSM)[J]. J Brazil Chem Soc, 2017, 28(2): 299-307. |
13 | 孙彤. 氧化石墨烯的合成、表征、功能化及其与生物大分子相互作用和生物相容性研究[D]. 大连: 辽宁师范大学, 2013. |
SUN T. The Synthesis, characterization, functionalization of graphene oxide and its interaction with biomoleculars and biocompatibility[D]. Dalian: Liaoning Normal Univerisity, 2013. | |
14 | 张云, 陈晓燕. 地表水环境中六价铬的测定研究[J]. 应用化工, 2012, 41(2): 349-351. |
ZHANG Y, CHEN X Y. Research on determination of chromium(Ⅵ) in surface water environment[J]. Appl Chem Ind, 2012, 41(2): 349-351. | |
15 | XU S J, LI D, D. WU P Y. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction[J]. Adv Funct Mater, 2015, 25(7): 1127-1136. |
16 | SABEEH H, ZULFIQAR S, AADIL M, et al. Flake-like MoS2 nano-architecture and its nanocomposite with reduced graphene oxide for hybrid supercapacitors applications[J]. Ceram Int, 2020, 46(13): 21064-21072. |
17 | LI X, ZHANG C F, XIN S, et al. Facile synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors[J]. ACS Appl Mater Interfaces, 2016, 8(33): 21373-21380. |
18 | GEBREEGZIABHER G, ASEMAHEGNE A, AYELE D M, et al. One-step synthesis and characterization of reduced graphene oxide using chemical exfoliation method[J]. Mater Today Chem, 2019, 12: 233-239. |
19 | GU W, YAN Y H, CAO X N, et al. A facile and one-step ethanol-thermal synthesis of MoS2 quantum dots for two-photon fluorescence imaging[J]. J Mater Chem B, 2016, 4(1): 27-31. |
20 | QURESHI T S. PANESAR D K. Impact of graphene oxide and highly reduced graphene oxide on cement based composites[J]. Constr Build Mater, 2019, 206: 71-83. |
21 | KAVINKUMAR T, VARUNKUMAR K, RAVIKUMAR V, et al. Anticancer activity of graphene oxide-reduced graphene oxide-silver nanoparticle composites[J]. J Colloid Interface Sci, 2017, 505: 1125-1133 |
22 | WU M H, LI L, XUE Y C, et al. Fabrication of ternary GO/g-C3N4/MoS2 flower-like heterojunctions with enhanced photocatalytic activity for water remediation[J]. Appl Catal B: Environ, 2018, 228: 103-112. |
23 | PERREAULT F, DE FARIA A F, ELIMELECH M. Environmental applications of graphene-based nanomaterials[J]. Chem Soc Rev, 2015, 44(16): 5861-5896. |
24 | OYETADE O A, NYAMORI V O, MARTINCIGH B S, et al. Effectiveness of carbon nanotube-cobalt ferrite nanocomposites for the adsorption of rhodamine B from aqueous solutions[J]. RSC Adv, 2015, 5(29): 22724-22739. |
25 | GOPALAKRISHNAN A, SINGH S P, BADHULIKA S. Reusable, few-layered-MoS2 nanosheets/grapheme hybrid on cellulose paper for superior adsorption of methylene blue dye[J]. New J Chem, 2020, 44(14): 5489-5500. |
26 | LI Y, LIU Z M, WU Y C, et al. Carbon dots-TiO2 nanosheets composites for photoreduction of Cr(VI) under sunlight illumination: favorable role of carbon dots[J]. Appl Catal B: Environ, 2018, 224: 508-517. |
27 | REN Z X, LIU X J, CHU H P, et al. Carbon quantum dots decorated MoSe2 photocatalyst for Cr(VI) reduction in the UV-Vis-NIR photon energy range[J]. J Colloid Interface Sci, 2017, 488: 190-195. |
28 | NIE Y C, YU F, WANG L C, et al. Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: performance and mechanism[J]. Appl Catal B: Environ, 2018, 227: 312-321. |
29 | REN Z Q, CHEN F Y, WEN K X, et al. Enhanced photocatalytic activity for tetracyclines degradation with Ag modified g-C3N4 composite under visible light[J]. J Photochem Photobiol A, 2020, 389: 112217. |
30 | LI J L, LIU X J, PAN L K, et al. MoS2-reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue[J]. RSC Adv, 2014, 4(19): 9647-9651. |
31 | ZHANG S Q, WANG L L, LIU C B,et al. Photocatalytic wastewater purification with simultaneous hydrogen production using MoS2 QDs-decorated hierarchical assembly of ZnIn2S4 on reduced graphene oxide photocatalyst[J]. Water Res,2017, 121: 11-19. |
32 | HU X F, JI H H, CHANG F, et al. Simultaneous photocatalytic Cr(VI) reduction and 2,4,6-TCP oxidation over g-C3N4 under visible light irradiation[J]. Catal Today, 2014, 224: 34-40. |
33 | HU X J, WANG W X, XIE G Y, et al. Ternary assembly of g-C3N4/graphene oxide sheets/BiFeO3 heterojunction with enhanced photoreduction of Cr(VI) under visible-light irradiation[J].Chemosphere, 2019,216: 733-741. |
[1] | Sheng-Jie LIU, Yong-Jie YE, Yin-Yi LIU, Shu-Man LIN, Hao-Yuan XIE, Wen-Ting LIU, Wei-Qin XU. Preparation of Uniformly Loaded Cu3P Nanoparticles in Porous Carbon Based on Copper Foam and Their Photocatalytic Performance for Dye Degradation [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1090-1097. |
[2] | ZHAO Xing-Peng, WANG Ya-Qiao, GAO Sheng-Wang, ZHU Jian-Chao, WANG Guo-Ying, XIA Xun-Feng, WANG Hong-Liang, WANG Shu-Ping. Synthesis of BiOBr/CeO2 Composites for Photocatalytic Degradation of Sulfisoxazole [J]. Chinese Journal of Applied Chemistry, 2021, 38(4): 422-430. |
[3] | HUO ZhaoHui, YANG Xiaoshan, CHEN Xiaoli, ZHANG Gang, YIN Wei, CAO Manli, SHI Lei, QIU Yanxuan. Preparation of Ag/Two-Dimensional Graphitic Carbon Nitride/Reduced Graphene Oxide Composite and Its Photocatalytic Degradation of Antibiotics [J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 471-480. |
[4] | HEI Jiahui, YANG Lining, LI Jun. Synthesis and Photocatalysis of Metal Complexes with Schiff Base Derived from 2-Thiophene Carboxaldehyde and Ethylenediamine [J]. Chinese Journal of Applied Chemistry, 2019, 36(8): 949-957. |
[5] | LI Jin, FENG Xun, GUO Hui. Nanorod-Assembled WO3·0.33H2O Microstructures with Improved Photocatalytic Property [J]. Chinese Journal of Applied Chemistry, 2017, 34(1): 60-70. |
[6] | LI Jin, FENG Xun, GUO Hui. Nanorod-Assembled WO3·0.33H2O Microstructures with Improved Photocatalytic Property [J]. Chinese Journal of Applied Chemistry, 2017, 34(1): 0-0. |
[7] | LIU Yuting1,2, CHEN Yanan2, XING Yanjun1,2*. Synthesis of Quaternary Phosphonium-Polyoxomatalate Room-temperature Ionic Liquids and Its Photocatalytic Degradation of Rhodamine-B [J]. Chinese Journal of Applied Chemistry, 2014, 31(04): 431-436. |
[8] | WANG Yi, PANG Maoyin, YU Xiaoqiang*, WANG Chaolei, MA Tingli. Synthesis and Performance of Organic Photosensitized Dyes Having Double Chain Structure [J]. Chinese Journal of Applied Chemistry, 2013, 30(06): 617-622. |
[9] | ZHANG Feng, ZHANG Heng*, ZHU Wancheng, LI Yanxin, ZHAO Bin. Microwave Preparation of Fe-Pillared Bentonite and its Photocatalytic Activity for the Degradation of Methyl Orange [J]. Chinese Journal of Applied Chemistry, 2012, 29(06): 668-673. |
[10] | LIANG Mao, WANG Xuda, YUAN Ying, SUN Zhe, XUE Song*. Synthesis and Photovoltaic Performance of Two Triarylamine Organic Dyes Based on Truxene [J]. Chinese Journal of Applied Chemistry, 2011, 28(12): 1387-1392. |
[11] | MENG Dan, WANG Heyi*, LIU Xiuhua, DING Lanlan. Effects of Fe-Doping on the Structures and Photocatalytic Activities of TiO2 Thin Films [J]. Chinese Journal of Applied Chemistry, 2011, 28(12): 1379-1386. |
[12] | MIN Shi-Xiong*, WANG Fang, WEI Li-Qiang, WANG Yong-Sheng, AN Hong-Gang, WU Dong-Qing. Preparation and Photocatalytic Activity of Fe3+ Doped TiO2/Attapulgite Composite Photocatalyst [J]. Chinese Journal of Applied Chemistry, 2010, 27(06): 700-704. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||