Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (5): 707-722.DOI: 10.19894/j.issn.1000-0518.210133
• Review • Previous Articles Next Articles
Guo-Hua DONG, Li-Juan HAO(), Wen-Zhi ZHANG(), Dong-Feng CHAI, Ming ZHAO, Kun LANG
Received:
2021-03-22
Accepted:
2021-07-07
Published:
2022-05-01
Online:
2022-05-24
Contact:
Li-Juan HAO,Wen-Zhi ZHANG
About author:
zhangwenzhi@qqhru.edu.cnSupported by:
CLC Number:
Guo-Hua DONG, Li-Juan HAO, Wen-Zhi ZHANG, Dong-Feng CHAI, Ming ZHAO, Kun LANG. Recent Progress on the Application of Carbon Quantum Dots Nano⁃materials in Lead Halogen Perovskite Solar Photoelectric Devices[J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 707-722.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210133
Fig.2 (A) Formation processes of S-CQDs, N-CQDs and CQDs using lotus powders as raw materials via a hydrothermal technique; (B) TEM image and size distribution of the CQDs; (C) HRTEM and SAED images of the CQDs[63]
性质 Properties | 领域 Field | 应用实例 Application examples |
---|---|---|
光学特性 Optical properties | 化学传感器Chemical sensors | 气体和离子检测 Detection of gases and ions[ |
生物相容性 Biocompatibility | 生物传感器Biosensor | 荧光标记 Fluorescent labeling [ |
水溶性,负载性能,无毒 Water soluble, loading performance, non?toxic | 生物成像Bioimaging | 目标识别 Target recognition[ |
绿色环保,催化效率高 Green environmental protection, high catalytic efficiency | 催化作用Catalysis | 催化与降解 Catalysis and degradation[ |
Table 1 Properties and applications of carbon quantum dots
性质 Properties | 领域 Field | 应用实例 Application examples |
---|---|---|
光学特性 Optical properties | 化学传感器Chemical sensors | 气体和离子检测 Detection of gases and ions[ |
生物相容性 Biocompatibility | 生物传感器Biosensor | 荧光标记 Fluorescent labeling [ |
水溶性,负载性能,无毒 Water soluble, loading performance, non?toxic | 生物成像Bioimaging | 目标识别 Target recognition[ |
绿色环保,催化效率高 Green environmental protection, high catalytic efficiency | 催化作用Catalysis | 催化与降解 Catalysis and degradation[ |
Fig.3 TEM image of GQDs synthesized at (A) 80 ℃, (B) 100 ℃ and (C) 120 ℃ (inset: the corresponding HR-TEM image); (D) A schematic representation of the prepared planar structure of the perovskite solar cells; (E) An energy diagram of the materials used in this work; (F) A cross-sectional SEM image of the GQD-based planar perovskite solar cells [95]
Fig.4 Schematic illustration of (A) synthesis process of CQDs-MAPbBr3,(B) preparation process of CQDs-MAPbBr3@SiO2; and (C) comparison of CQDs-MAPbBr3 and proposed CQDs-MAPbBr3@SiO2 under air and moisture conditions; TEM images of (D) pure SiO2 (E) CQDs-MAPbBr3@SiO2[110]
Fig.5 Depiction of the device (A) and energy levels of the materials employed (B) with the device architecture FTO/d-TiO2/mp-TiO2/MAPI/HTM/Au, where HTM is either CQDs or spiro-OMeTAD (C) Current density-voltage charac-teristics of the MAPI devices with and without the HTMs studied in this work. The measurements have been performed in reverse scan (from higher to lower voltages)[113]
序号 Num | 碳纳米材料 Nano carbon materials | 结构 Structure | 种类 Species | 光电转换效率 Photoelectric conversion efficiency/% | 文献 Ref. |
---|---|---|---|---|---|
1 | GQDs | FTO/GQDs/TiO2/Perovskite/Spiro?OMeTAD/Au | 平面 Plane | 19.11 | [ |
2 | CDs | FTO/c?TiO2/m?TiO2/ CDS/Perovskite/Spiro?OMeTAD/Au | 介孔Mesoporous | 16.4 | [ |
3 | CQDs | FTO/m?TiO2/LPP layer/Redox electrolyte/Counter electrode | 介孔Mesoporous | 15.1 | [ |
4 | GQDs | ITO/SnO2∶GQDs/Perovskite/Spiro?OMeTAD/Au | 平面 Plane | 20.23 | [ |
5 | GQDs | FTO/TiO2/Perovskite/Spiro?OMeTAD/Au | 平面 Plane | 19.89 | [ |
6 | GQDs | FTO/Perovskite/Carbon | 平面 Plane | 4.1 | [ |
7 | CQDs | FTO/PEDOT∶PSS/Perovskite/PCBM∶CQDs/BCP/Ag | 平面 Plane | 18.1 | [ |
8 | CQDs | ITO/SnO2?RCQs/Perovskite/Spiro/MoO3/Au | 平面 Plane | 22.77 | [ |
9 | g?C3N4 | ITO/G?SnO2/Perovskite/Spiro?OMeTAD/Au | 平面 Plane | 22.13 | [ |
10 | CQDs | FTO/bl?TiO2/TiO2 nanosheets/ZrO2/Perovskite/Carbon electrode | 平面 Plane | 7.62 | [ |
11 | CQDs | FTO/bl?TiO2/Perovskite/ml?TiO2/Spiro?OMeTAD/Ag | 平面 Plane | 15.93 | [ |
12 | CQDs | FTO/c?TiO2/TiO2/Perovskite/Spiro?OMeTAD/Ag | 平面 Plane | 19.38 | [ |
13 | GQDs | FTO/TiO2 NPs/GQDs/Perovskite/Au | 平面 Plane | - | [ |
14 | CQDs | ITO/PCB61M/Perovskite/NiO x /Ag | 反向 | 18.24 | [ |
15 | CQDs | ITO/PTAA/Perovskite+CQDs/Ti/Cu | 平面 Plane | 19.17 | [ |
16 | g?CNQDs | FTO/SnO2/g?CNQD/Perovskite/Spiro?OMeTAD/Au | 平面 Plane | 21.23 | [ |
17 | CQDs | FTO/d?TiO2/mp?TiO2/Perovskite/HTM/Au | 平面 Plane | 3 | [ |
18 | GQDs | FTO/c?TiO2/Perovskite(GQDs)/Spiro?OMeTAD/Au | 平面 Plane | 18.9 | [ |
19 | E?g?C3N4 | FTO/TiO2/Perovskite(E?g?C3N4)/Spiro?OMeTAD/Au | 平面 Plane | 15.8 | [ |
20 | CQDs | ITO/NiO/Perovskite/PCBM/BCP/Ag | 平面 Plane | 17.02 | [ |
21 | CQDs | FTO/GO/C?dots/Perovskite/PCBM/Ag | 平面 Plane | 16.2 | [ |
Table 2 Types of carbon nanomaterials and perovskite solar cells
序号 Num | 碳纳米材料 Nano carbon materials | 结构 Structure | 种类 Species | 光电转换效率 Photoelectric conversion efficiency/% | 文献 Ref. |
---|---|---|---|---|---|
1 | GQDs | FTO/GQDs/TiO2/Perovskite/Spiro?OMeTAD/Au | 平面 Plane | 19.11 | [ |
2 | CDs | FTO/c?TiO2/m?TiO2/ CDS/Perovskite/Spiro?OMeTAD/Au | 介孔Mesoporous | 16.4 | [ |
3 | CQDs | FTO/m?TiO2/LPP layer/Redox electrolyte/Counter electrode | 介孔Mesoporous | 15.1 | [ |
4 | GQDs | ITO/SnO2∶GQDs/Perovskite/Spiro?OMeTAD/Au | 平面 Plane | 20.23 | [ |
5 | GQDs | FTO/TiO2/Perovskite/Spiro?OMeTAD/Au | 平面 Plane | 19.89 | [ |
6 | GQDs | FTO/Perovskite/Carbon | 平面 Plane | 4.1 | [ |
7 | CQDs | FTO/PEDOT∶PSS/Perovskite/PCBM∶CQDs/BCP/Ag | 平面 Plane | 18.1 | [ |
8 | CQDs | ITO/SnO2?RCQs/Perovskite/Spiro/MoO3/Au | 平面 Plane | 22.77 | [ |
9 | g?C3N4 | ITO/G?SnO2/Perovskite/Spiro?OMeTAD/Au | 平面 Plane | 22.13 | [ |
10 | CQDs | FTO/bl?TiO2/TiO2 nanosheets/ZrO2/Perovskite/Carbon electrode | 平面 Plane | 7.62 | [ |
11 | CQDs | FTO/bl?TiO2/Perovskite/ml?TiO2/Spiro?OMeTAD/Ag | 平面 Plane | 15.93 | [ |
12 | CQDs | FTO/c?TiO2/TiO2/Perovskite/Spiro?OMeTAD/Ag | 平面 Plane | 19.38 | [ |
13 | GQDs | FTO/TiO2 NPs/GQDs/Perovskite/Au | 平面 Plane | - | [ |
14 | CQDs | ITO/PCB61M/Perovskite/NiO x /Ag | 反向 | 18.24 | [ |
15 | CQDs | ITO/PTAA/Perovskite+CQDs/Ti/Cu | 平面 Plane | 19.17 | [ |
16 | g?CNQDs | FTO/SnO2/g?CNQD/Perovskite/Spiro?OMeTAD/Au | 平面 Plane | 21.23 | [ |
17 | CQDs | FTO/d?TiO2/mp?TiO2/Perovskite/HTM/Au | 平面 Plane | 3 | [ |
18 | GQDs | FTO/c?TiO2/Perovskite(GQDs)/Spiro?OMeTAD/Au | 平面 Plane | 18.9 | [ |
19 | E?g?C3N4 | FTO/TiO2/Perovskite(E?g?C3N4)/Spiro?OMeTAD/Au | 平面 Plane | 15.8 | [ |
20 | CQDs | ITO/NiO/Perovskite/PCBM/BCP/Ag | 平面 Plane | 17.02 | [ |
21 | CQDs | FTO/GO/C?dots/Perovskite/PCBM/Ag | 平面 Plane | 16.2 | [ |
1 | SAHLI F, WERNER J, KAMINO B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nat Mater, 2018, 17(9): 820-826. |
2 | SONG J, YANG Y, ZHAO Y L, et al. Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell[J]. Mater Sci Eng B, 2017, 217(3): 18-25. |
3 | THAMBIDURAI M, DEWI H A, HARIKESH P C, et al. Highly efficient perovskite solar cells with Ba(OH)2 interface modification of mesoporous TiO2 electron transport layer[J]. ACS Appl Energy Mater, 2018, 1(11): 5847-5852. |
4 | CHEN L J, XIE Q M, WAN L, et al. Solution-processed MoOx hole-transport layer with F4-TCNQ modification for efficient and stable inverted perovskite solar cells[J]. ACS Appl Energy Mater, 2019, 2(8): 5862-5870. |
5 | CHEN Z, NING X Y, KE H Z, et al. Advanced hollow carbon nanocubes as hosts for sulfur particles in improved lithium-sulfur battery cathode material with high cycling stability[J]. Mater Lett, 2021, 285(2): 129061-129064. |
6 | 翟顺成, 郭平, 郑继明,等. 第一性原理研究O和S掺杂的石墨相氮化碳(g-CN)量子点电子结构和光吸收性质[J]. 物理学报, 2017, 66(18): 225-236. |
ZHAI S C, GUO P, ZHENG J M, et al. The electronic structure and optical absorption properties of O-doped and S-doped graphite carbon nitride (g-CN) quantum dots were studied by first principles[J]. Acta Phys Sin, 2017(18): 225-236. | |
7 | 张亚楠, 温海霞. 碳量子点在肿瘤治疗中的应用[J]. 中国医药导报, 2020, 17(13): 69-72. |
ZHANG Y N, WEN H X. Application of carbon quantum dots in tumor therapy[J]. Chin Med Herald, 2020, 17(13): 69-72. | |
8 | CHEN B B, LIU M L, HUANG C Z. Carbon dots-based composites for catalytical applications[J]. Green Chem, 2020, 22(13): 4034-4054. |
9 | GUO Y M, ZHAO W. Hydrothermal synthesis of highly fluorescent nitrogen-doped carbon quantum dots with good biocompatibility and the application for sensing ellagic acid[J]. Spectrochim Acta A, 2020, 240(10): 118580-118586. |
10 | LI H L, FEI C X, YANG D, et al. Synthesis of carbon nitride quantum dots and biocompatibility evaluation using C. elegans as a model organism[J]. Mater Today Commun, 2020, 25(12): 101383-101392. |
11 | MILICA G, SILVIA K, KRISTYNA S, et al. One-pot synthesis of natural amine-modified biocompatible carbon quantum dots with antibacterial activity[J]. J Colloid Interface Sci, 2020, 580(11): 30-48. |
12 | 刘永强, 黄浩, 翟进生, 等. 石墨烯量子点/CdS/CdSe共敏化太阳能电池[J]. 无机材料学报, 2017, 32(10): 1042-1048. |
LIU Y Q, HUANG H, ZHAI J S, et al. Graphene quantum dots/CdS/CdSe co-sensitized solar cells[J]. J Inorg Mater. 2017, 32(10): 1042-1048. | |
13 | ZHANG D W, PAPAIOANNOU N, MICHELLEDAVID N, et al. Photoelectrochemical response of carbon dots (CDs) derived from chitosan and their use in electrochemical imaging[J]. Mater Horiz, 2018, 5(3): 423-428. |
14 | GAN Z Y, HU X T, HUANG X W, et al. A dual-emission fluorescence sensor for ultrasensitive sensing mercury in milk based on carbon quantum dots modified with europium (Ⅲ) complexes[J]. SensActuator B:Chem, 2021, 328(2): 128997. |
15 | DEBABRATA G D, PAYEL M, DIPANJAN G, et al. carbon quantum dots prepared from onion extract as fluorescence turn-on probes for selective estimation of Zn2+ in blood plasma[J]. Colloid Surf A, 2021, 611(2): 125781. |
16 | ZHU J T, CHU H Y, WANG T S, et al. fluorescent probe based nitrogen doped carbon quantum dots with solid-state fluorescence for the detection of Hg2+ and Fe3+ in aqueous solution[J]. Microchem J, 2020, 158(11): 105142. |
17 | HAWKINS S, YAO H Q, WANG H F, et al. Tensile properties and electrical conductivity of epoxy composite thin films containing zinc oxide quantum dots and multi-walled carbon nanotubes[J]. Carbon, 2017, 115(5): 18-27. |
18 | NIMA D, SOHEILA J, JAMAL K, et al. Enhance the electrical conductivity and charge storage of nematic phase by doping 0D photoluminescent graphene was prepared with small organic molecule as a new array quantum dot liquid crystal displays[J]. J Mol Liq, 2019, 276(2): 290-295. |
19 | MARYAM F H, MAJID A, UWE S, et al. Self-assembled cauliflower-like pyrite-S,N Co-doped graphene quantum dots as free-standing anode with high conductivity and biocompatibility for bioelectricity production[J]. Fuel, 2021, 286(2): 119291. |
20 | IEREMIAS C, CONSTANTINE D S, LEONARDOS I D. Induced toxicity in early-life stage zebrafish (danio rerio) and its behavioral analysis after exposure to non-doped, nitrogen-doped and nitrogen, sulfur-Co doped carbon quantum dots[J]. Environ Toxicol Pharmacol, 2020, 79(10): 103426. |
21 | HU J C, HE X M, PU H B, et al. The influence of exposed surface on trap state of PbS quantum dots[J]. Superlattices Microstruct, 2020, 145(9): 106616. |
22 | 彭勇, 罗昔贤, 付姚, 等. 热分解含硫金属有机配合物制备近红外PbS量子点[J]. 物理学报, 2013, 62(20): 458-462. |
PENG Y, LUO X X, FU Y, et al. Synthesis of near infrared PbS quantum dots by pyrolysis of organometallic sulfur complex[J]. Acta Phys Sin-Ch Ed, 2013, 62(20): 458-462. | |
23 | 耿蕊, 张玉江, 陈青山. 红外PbX量子点光致发光特性研究[J]. 红外技术, 2017, 39(2): 125-129, 135. |
GENG R, ZHANG Y J, CHEN Q S, et al. Photoluminescence properties of infrared PbX quantum dots[J]. Infrared Technol, 2017, 39(02): 125-129, 135. | |
24 | 王萌萌, 王吉龙, 孙湖泊, 等. 碲化镉量子点Cd2+释放对小鼠肝、肾组织毒作用的研究[J]. 生态毒理学报, 2015, 10(3): 256-261. |
WANG M M, WANG J L, SUN H P, et al. Toxic effects of Cd2+ released from CdTe quantum dots on liver and kidney in mice[J]. Asian J Ecotoxicol, 2015, 10(3): 256-261. | |
25 | 赵斌, 赵肃清, 张焜, 等. 硫脲修饰Cd掺杂ZnO水溶性量子点的制备及表征[J]. 化学学报, 2011, 69(7): 777-782. |
ZHAO B, ZHAO S Q, ZHANG K, et al.Preparation and characterization of thiourea modified CD doped ZnO water soluble quantum dots[J]. Acta Chim Sin, 2011, 69(7): 777-782. | |
26 | 王光丽, 董玉明, 徐静娟, 等. Zn0.15Cd0.85S量子点复合材料的合成及其对Cu2+的超灵敏测定[J]. 中国科学: 化学, 2010, 40(8): 1114-1120. |
WANG G L, DONG Y M, XU J J, et al, Synthesis of Zn0.15Cd0.85S quantum dot composite and its ultra sensitive determination of Cu2+[J]. Sci Sin Chim, 2010, 40(8): 1114-1120. | |
27 | HAO X J, CHO E, FLYNN C, et al. Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells[J]. Sol Energy Mater Sol Cells, 2009, 93(2): 273-279. |
28 | CHENG Q J, TAM E, XU S Y, et al. Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation[J]. Nanoscale, 2010, 2(4): 594-600. |
29 | YI Y H, DENG J H, ZHANG Y Y, et al. Label-free Si quantum dots as photoluminescence probes for glucose detection[J]. Chem Commun, 2013, 49(6): 612-614. |
30 | QI L, PAN T H, OU L L, et al. Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage[J]. Commun Biol, 2021, 4(1): 214-214. |
31 | GUO R B, ZENG D D, XIE Y, et al. Carbon nitride quantum dots (CNQDs)/TiO2 nanoparticle heterojunction photocatalysts for enhanced ultraviolet-visible-light-driven bisphenol a degradation and H2 production[J]. Int J Hydrogen Energy, 2020,45(43): 22534-22544. |
32 | ZHU S J, ZHAO X H, SONG Y B, et al. Beyond bottom-up carbon nanodots: citric-acid derived organic molecules[J]. Nano Today, 2016, 11(2): 128-132. |
33 | 张雪, 耿乙迦, 陶淞源, 等. 碳化聚合物点发光主体的探究[J]. 高等学校化学学报, 2019, 40(12): 2521-2525. |
ZHANG X, GENG Y J, TAO S Y, et al. Main luminescent centers of carbonized polymer dots[J]. Chem J Chinese Univ, 2019, 40(12): 2521-2525. | |
34 | 明亮, 习霞. 多壁碳纳米管-CdTe量子点复合修饰电极测定水样中痕量镍[J]. 冶金分析, 2012, 32(6): 14-17. |
MING L, XI X. Determination of trace nickel in water samples by multi walled carbon nanotubes CdTe quantum dots composite modified electrode[J]. Metal Anal, 2012, 32(6): 14-17. | |
35 | CAMPBELL J F, TESSMER I, THORP H H, et al. Atomic force microscopy studies of DNA-wrapped carbon nanotube structure and binding to quantum dots[J]. J Am Chem Soc, 2008, 130(32): 10648-10655. |
36 | ZHANG J L, TAN X C, ZHAO D D, et al. Amperometric hydrogen peroxide biosensor based on multiwall carbon nanotubes and cadmium sulfide quantum dots[J]. Chem Res Chinese Univ, 2010, 26(4): 541-545. |
37 | HENDERSON L C, SERVINIS L, WALSH T R, et al.Tailoring the fibre-to-matrix interface using click chemistry on carbon fibre surfaces[J]. J Mater Chem A, 2017, 5(22): 11204-11213. |
38 | 罗培辉, 刘锦茂. 化学氧化碳纤维制备石墨烯量子点[J]. 三明学院学报, 2015, 32(4): 11-15. |
LUO P H, LIU J M. Preparation of graphene quantum dots by chemical oxidation of carbon fiber[J]. J Sanming Univ, 2015, 32(4): 11-15. | |
39 | 邱申保, 王素敏, 王奇观, 等. 水溶性氮掺杂石墨烯量子点的合成及其对Pb2+的选择性识别研究[J]. 影像科学与光化学, 2018, 36(1): 108-116. |
QIU S B, WANG S M, WANG Q G, et al. Synthesis of water soluble nitrogen-doped graphene quantum dots and its fluorescence recognition of Pb[J]. Photogra Sci Photochem, 2018, 36(1): 108-116. | |
40 | 谢文菁, 傅英懿, 马红, 等. 荧光石墨烯量子点制备及其在细胞成像中的应用[J]. 化学学报, 2012, 70(20): 2169-2172. |
XIE W J, FU Y Y, MA H, et al. Preparation of fluorescent graphene quantum dots as biological imaging marker for cells[J]. Acta Chim Sin, 2012, 70(20): 2169-2172. | |
41 | 李腾飞, 李昳玮, 肖璐, 等. 荧光可调控的碳量子点的电化学制备及性质研究[J]. 化学学报, 2014, 72(2): 227-232. |
LI T F, LI Y E, XIAO L, et al. Electrochemical preparation of color-tunable fluorescent carbon quantum dots[J]. Acta Chim Sin, 2014, 72(2): 227-232. | |
42 | 许贺, 潘哲伦, 谢昱, 等. Nafion/石墨烯量子点修饰电极对重金属和氯霉素的电化学检测[J]. 分析科学学报, 2019, 35(3): 270-276. |
XU H, PAN Z L, XIE Y, et al.Electrochemical detection of heavy metals and chloramphenicol based on nafion/graphene quantum dots modified electrode[J]. J Anal Sci, 2019, 35(3): 270-276. | |
43 | 孙晓峰, 李洪光. 碳量子点掺杂的蠕虫状胶束[J]. 日用化学工业, 2018, 48(9): 483-488. |
SUN X F, LI H G. Vermicular micelles doped with carbon quantum dots[J]. China Surfactant Deterg Cosmet, 2018, 48(9): 483-488. | |
44 | 吴文玉, 王鹏博, 张野, 等. 杯芳烃-Zn2+配合物修饰的碳量子点荧光纳米传感器组装及纯水体系H2PO4 - 识别[J]. 科学通报, 2014, 59(17): 1617-1620. |
WU W Y, WANG P B, ZHANG Y, et al.Assembly of calixarene-Zn2+ complex modified carbon quantum dots fluorescent nanosensor and recognition of H2PO4 - in pure water[J]. Chinese Sci Bull, 2014, 59(17): 1617-1620. | |
45 | DONG Y Q, ZHOU N N, LIN X M, et al. Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon[J]. Chem Mater, 2010, 22(21): 5895-5899. |
46 | REN H T, GE L, GUO Q, et al. The enhancement of photocatalytic performance of SrTiO3 nanoparticles via combining with carbon quantum dots[J]. RSC Adv, 2018, 8(36): 20157-20165. |
47 | 严拯宇, 肖岸, 吕华, 等. ZnO掺杂碳量子点的流动注射化学发光法测定甲硝唑[J]. 新型炭材料, 2014, 29(3): 216-224. |
YAN Z Y, XIAO A, LV H, et al. Determination of metronidazole by a flow-injection chemiluminescence method using ZnO-doped carbon quantum dots[J]. New Carbon Mater, 2014, 29(3): 216-224. | |
48 | LV J, FU L P, ZENG B, et al. Synthesis and acidizing corrosion inhibition performance of N-doped carbon quantum dots[J]. Russ J Appl Chem, 2019, 92(6): 848-856. |
49 | CHEN Y Y, QIN X, YUAN C L, et al. Switch on fluorescence mode for determination of L-cysteine with carbon quantum dots and Au nanoparticles as a probe[J]. RSC Adv, 2020, 10(4): 1989-1994. |
50 | MENG T H, ZHONG T, JIANG Y P, et al. Preparation of nitrogen doped carbon quantum dots by microwave one-step method and their application in dopamine detection[J]. J Instrum Anal, 2019, 31(10): 1732-1738. |
51 | DONG G H, LANG K, OUYANG H, et al. Facile synthesis of N,P-doped carbon dots from maize starch via a solvothermal approach for the highly sensitive detection of Fe3+[J]. Rsc Adv, 2020, 10 (55): 33483-33489. |
52 | 郝丽娟, 王婷, 董国华, 等. 基于玉米淀粉制备绿色碳量子点及氢离子/氢氧根离子调节荧光开关性能[J]. 应用化学, 2021, 38(2): 202-211. |
HAO L J, WANG T, DONG G H,et al. Preparation of green carbon quantum dots from corn starch and hydrogen ion/hydroxyl ion regulated fluorescent switch performance[J]. Chinese J Appl Chem, 2021, 38(2): 202-211. | |
53 | 李想, 刘学达, 于金英, 等. 水热法制备荧光碳量子点的研究[J]. 化学工程师, 2016, 30(7): 22-24. |
LI X, LIU X D, YU J Y, et al. Study on the preparation of fluorescent carbon quantum dots by hydrothermal method[J]. Chem Eng, 2016, 30(7): 22-24. | |
54 | 邓鹏俊, 张海容. 微波法合成碳量子点条件探索[J]. 山东化工, 2019, 48(10): 10-11. |
DENG P J, ZHANG H R. Microwave synthesis of carbon quantum dots[J]. Shandong Chem Ind, 2019, 48(10): 10-11. | |
55 | WIKTOR K, TOMASZ Ś, SZCZEPAN B, et al. Luminescence phenomena of carbon dots derived from citric acid and urea-a molecular insight[J]. Nanoscale, 2018, 10(29): 13889-13894. |
56 | LI X H, ZHAO Z W. Facile ionic-liquid-assisted electrochemical synthesis of size-controlled carbon quantum dots by tuning applied voltages[J]. RSC Adv, 2014, 4(101): 57615-57619. |
57 | XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc, 2004, 126(40): 12736-12737. |
58 | ZHOU J G, BOOKER C, LI R Y, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J]. J Am Chem Soc, 2007, 129(4): 744-745. |
59 | BUI T H, PHAM V H, HOANG N V, et al. Luminescence of lemon-derived carbon quantum dot and its potential application in luminescent probe for detection of Mo6+ ions[J]. Luminescence, 2018, 33(3): 545-551. |
60 | MOHAMMAD S, SALMEH F. Green synthesis of highly fluorescent graphene oxide/carbon quantum dot colloid from rice[J]. J Electron Mater, 2020, 49(6): 1-9. |
61 | ZHANG Y Q, LIU X Y, FAN Y, et al. One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields[J]. Nanoscale, 2016, 8(33): 15281-15287. |
62 | TAO H Q, YANG K, MA Z, et al. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J]. Small, 2012, 8(2): 281-290. |
63 | LIU L M, YU X P, YI Z C, et al. High efficiency solar cells tailored using biomass-converted graded carbon quantum dots[J]. Nanoscale, 2019, 11(32): 15083-15090. |
64 | 孙雪花, 杨娇莉, 柴红梅, 等. 基于D-果糖合成的碳量子点用于金属离子的检测[J]. 分析科学学报, 2020, 36(1): 131-134. |
SUN X H, YANG J L, CHAI H M, et al. Detection of metal ions using carbon quantum dots synthesized from D-fructose[J]. J Anal Sci, 2020, 36(1): 131-134. | |
65 | MIAO X, QU D, YANG D X, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization[J]. Adv Mater, 2018, 30(1): 1704740.1-1704740.8. |
66 | ZHENG Y N, ZHENG J X, WANG J L, et al. Facile preparation of stable solid-state carbon quantum dots with multi-peak emission[J]. Nanomaterials, 2020, 10(2): 303. |
67 | LI X Y, WANG H Q, SHIMIZU Y, et al. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents[J]. Chem Commun, 2011, 47(3): 932-934 |
68 | QIAN Z S, MA J J, SHAN X Y, et al. Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform[J]. Chem-Eur J, 2014, 20(8): 2254-2263. |
69 | WU X L, SONG Y, YAN X, et al. Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination[J]. Biosens Bioelectron, 2017, 94(8): 292-297. |
70 | WANG X, YANG P, FENG Q, et al. Green preparation of fluorescent carbon quantum dots from cyanobacteria for biological imaging[J]. Polymers, 2019, 11(4): 616. |
71 | QIAN Z S, SHAN X Y, CHAI L J, et al. Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor[J]. ACS Appl Mater Interfaces, 2014, 6(9): 6797-6805. |
72 | ZHANG W Y, WU B B, LI Z F, et al. Carbon quantum dots as fluorescence sensors for label-free detection of folic acid in biological samples[J]. Spectrochim Acta A, 2020, 229(3): 117931. |
73 | LIU L Z, MI Z, GUO Z Y, et al. A label-free fluorescent sensor based on carbon quantum dots with enhanced sensitive for the determination of myricetin in real samples[J]. Microchem J, 2020, 157(9): 104956. |
74 | ZUBAIR M S H K, SHABEENA S, SHUMAILA, et al. A facile one step hydrothermal synthesis of carbon quantum dots for label-free fluorescence sensing approach to detect picric acid in aqueous solution[J]. J Photochem Photobiol A, 2020, 338(2): 112201. |
75 | KHALID M O, DIARY I T, GHAFOOR D D. Highly photoluminescent label free probe for chromium(II) ions using carbon quantum dots co-doped with nitrogen and phosphorous[J]. J Lumin, 2019, 206(2): 540-546. |
76 | HU X T, LI Y X, XU Y W, et al. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk[J]. Food Chem, 2020, 339(3): 127775. |
77 | RAJI A, THOMAS N J I E, SUGUNA P, et al. Green synthesized multiple fluorescent nitrogen-doped carbon quantum dots as an efficient label-free optical nanoprobe for in vivo live-cell imaging[J]. J Photochem Photobiol A, 2019, 372(12): 99-107. |
78 | YU H, ZHANG H C, HUANG H, et al. ZnO/carbon quantum dots nanocomposites: one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature[J]. New J Chem, 2012, 36(4): 1031-1035. |
79 | HOU J F, LI H, TANG Y Q, et al. Supported N-doped carbon quantum dots as the highly effective peroxydisulfate catalysts for bisphenol F degradation[J]. Appl Catal B:Environ, 2018, 238(12): 225-235. |
80 | JOVANA P, BOJANA V, ZORAN M, et al. Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications[J]. Ceram Int, 2019, 45(14): 17006-17013. |
81 | 纪三郝, 杨菲, 于凤琴, 等. 钙钛矿太阳能电池的研究进展[J]. 煤炭与化工, 2016, 39(1): 29-33. |
JI S H, YANG F, YU F Q, et al. Research progress of perovskite solar cells[J]. Coal Chem Ind, 2016, 39(1): 29-33. | |
82 | 翟金叶. 晶硅太阳能电池发展状况及趋势[J]. 电子技术与软件工程, 2018, 4(126): 86. |
ZHAI J Y. Development status and trend of crystalline silicon solar cells[J]. Electronic Technol Software Eng, 2018, 4(126): 86. | |
83 | 李荣荣, 赵晋津, 司华燕, 等. 柔性薄膜太阳能电池的研究进展[J]. 硅酸盐学报, 2014, 42(7): 878-885. |
LI R R, ZHAO J J, SI H Y, et al. Development of fiexible thin film solar cells[J]. J Chinese Ceram Soc, 2014, 42(7): 878-885. | |
84 | 孙焕德, 贾玉婷, 焦钰军, 等. 新型柔性太阳能电池研究进展[J]. 硅酸盐通报, 2020, 39(3): 855-865. |
SUN H D, JIA Y T, JIAO Y J, et al. Research progress on new flexible solar cells[J]. J Chinese Ceram Soc, 2020, 39(3): 855-865. | |
85 | 徐尧, 曾宪伟, 张文君, 等. 反式p-i-n结构钙钛矿太阳能电池[J]. 中国科学:化学, 2016, 46(4): 342-356. |
XU Y, ZENG X W, ZHANG W J, et al. Inverted “p-i-n” structure perovskite solar cells[J]. Sci Sin Chim, 2016, 46(4): 342-356. | |
86 | DONG G H, HA J, YANG Y L, et al. 4-Tert butylpyridine induced MAPbI3 film quality enhancement for improving the photovoltaic performance of perovskite solar cells with two-step deposition route[J]. Appl Surf Sci, 2019, 484: 637-645. |
87 | DONG G H, YANG Y L, SHENG L,et al. Junhai, inverted thermal annealing of perovskite films: a method for enhancing photovoltaic device efficiency[J]. RSC Adv, 2016, 6(50): 44034-44040. |
88 | DONG G H, YE T L, PANG B Y, et al. HONH3Cl optimized CH3NH3PbI3 films for improving performance of planar heterojunction perovskite solar cells via a one-step route[J]. Phys Chem Chem Phys, 2016, 18(37): 26254-26261. |
89 | HA J, DONG G H, YANG Y L,et al. Boosting the film quality by simultaneously pre-wetting the PbI2 film and Ostwald ripening the MAPbI3 film with DMSO addition into MAI solution[J]. Chem Select, 2018,3(17): 4951-4958. |
90 | DONG G H, XIA D B, YANG Y L, et al. Regulated film quality with methylammonium bromide addition in a two-step sequential deposition to improve the performance of perovskite solar cells[J]. Energy Technol-Ger, 2017, 5(10): 1873-1879. |
91 | QIU L L, YANG Y L, DONG G H, et al. Surfaces modification of MAPbI3 films with hydrophobic β-NaYF4∶Yb,Er up-conversion ultrathin layers for improving the performance of perovskitesolar cells[J]. Appl Surf Sci, 2018, 448(1): 145-153. |
92 | DONG G H, YE T L, YANG Y L, et al. SiW12-TiO2 Mesoporous layer for enhanced electron-extraction efficiency and conductivity in perovskite solar cells[J]. ChemSusChem, 2017, 10(10): 2218-2225. |
93 | DONG G H, XIA D B, YANG Y L, et al. In⁃situ passivation of TiO2 mesoporous scaffold with nano-sized heteropolyacid for boosting the efficiency of the perovskite solar cells[J]. Electrochim Acta, 2020, 332(2): 135427. |
94 | DONG G H, XIA D B, YANG Y L,et al. Keggin-type PMo11V as a P-type dopant for enhancing the efficiency and reproducibility of perovskite solar cells[J]. ACS Appl Mater Interfaces, 2017, 9(3): 2378-2386. |
95 | JAEHOON R, JONG W L, HAEJUN Y,et al. Size effects of a graphene quantum dot modified-blocking TiO2 layer for efficient planar perovskite solar cells[J]. J Mater Chem A, 2017, 5(34): 16834-16842 |
96 | JIN J J, CHEN C, LI H, et al. Enhanced performance and photostability of perovskite solar cells by introduction of fluorescent carbon dots[J]. ACS Appl Mater Interfaces, 2017, 9(16): 14518-14524. |
97 | TANG Q W, ZHU W L, HE B L, et al. Rapid conversion from carbohydrates to large-Scale carbon quantum dots for all-weather solar cells[J]. ACS Nano, 2017, 11(2): 1540-1547. |
98 | XIE J S, HUANG K, YU X G, et al. Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells[J]. ACS Nano, 2017, 11(9): 9176-9182. |
99 | ZHANG X S, WANG Q, JIN Z W, et al. Graphdiyne quantum dots for much improved stability and efficiency of perovskite solar cells[J]. Adv Mater Interfaces, 2018, 5(2): 1701117. |
100 | DUAN J L, ZHAO Y Y, HE B L, et al. Simplified perovskite solar cell with 4.1% efficiency employing inorganic CsPbBr3 as light absorber[J]. Small, 2018, 14(20): 1704443. |
101 | ZHU X M, SUN J, YUAN S, et al. Efficient and stable planar perovskite solar cells with carbon quantum dots-doped PCBM electron transport layer[J]. New J Chem, 2019, 43(18): 7130-7135. |
102 | HUI W, YANG Y G, XU Q, et al. Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells[J]. Adv Mater, 2019, 32(4): 1906374. |
103 | CHEN J B, DONG H, ZHANG L, et al. Graphitic carbon nitride doped SnO2 enabling efficient perovskite solar cells with PCEs exceeding 22%[J]. J Mater Chem A, 2020, 8(5): 2644-2653. |
104 | ZOU H Y, GUO D P, HE B W, et al. Enhanced photocurrent density of HTM-free perovskite solar cells by carbon quantum dots[J]. Appl Surf Sci, 2018, 430(2): 625-631. |
105 | WANG Y F, ZHANG J, CHEN S H, et al. Surface passivation with nitrogen-doped carbon dots for improved perovskite solar cell performance[J]. J Mater Sci, 2018, 53(12): 9180-9190. |
106 | GUO Q, YUAN F L, ZHANG B, et al. Passivation of the grain boundaries of CH3NH3PbI3 sing carbon quantum dots for highly efficient perovskite solar cells with excellent environmental stability[J]. Nanoscale, 2018, 11(1): 115-124. |
107 | SUBRAMANIAN A, AKRAM J, HUSSAIN S, et al. High-performance photodetector based on a graphene quantum dot/CH3NH3PbI3 perovskite hybrid[J]. ACS Appl Electron Mater, 2019, 2(1): 230-237. |
108 | ALGADI H, MAHATA C, WOO J, et al. Enhanced photoresponsivity of all-Inorganic (CsPbBr3) perovskite nanosheets photodetector with carbon nanodots (CDs)[J]. Electronics, 2019, 8(6): 678. |
109 | MA Y H, ZHANG H Y, ZHANG Y W, et al. Enhancing the performance of inverted perovskite solar cells via grain boundary passivation with carbon quantum dots[J]. ACS Appl Mater Interfaces, 2019, 11(3): 3044-3052. |
110 | WANG J X, LI M, SHEN W, et al. Ultrastable carbon quantum dots-doped MAPbBr3 perovskite with silica-encapsulation[J]. ACS Appl Mater Inter, 2019, 11(37): 34348-34354. |
111 | WEN Y, ZHU G, SHAO Y. Improving the power conversion efficiency of perovskite solar cells by adding carbon quantum dots[J]. J Mater Sci, 2020, 55(7): 2937-2946. |
112 | LIU P, SUN Y, WANG S F, et al. Two dimensional graphitic carbon nitride quantum dots modified perovskite solar cells and photodetectors with high performances[J]. J Power Sources, 2020, 451(3): 227825. |
113 | SOFIA P, GEORGIANA S, WERTHER C, et al. Carbon quantum dots as new hole transport material for perovskite solar cells[J]. Synth Met, 2016, 222(12): 17-22. |
114 | MATTA S, ZHANG C M, O'MULLANE A, et al. Density functional theory investigation of carbon dots as hole-transport material in perovskite solar cells[J]. ChemPhysChem, 2018, 19(22): 3018-3023. |
115 | ZHANG J J, TONG T, ZHANG L Y, et al. Enhanced performance of planar perovskite solar cell by graphene quantum dot modification[J]. ACS Sustainable Chem Eng, 2018, 6(7): 8631-8640. |
116 | WEI X F, LIU X Q, LIU H, et al. Exfoliated graphitic carbon nitride self-recognizing CH3NH3PbI3 grain boundaries by hydrogen bonding interaction for improved perovskite solar cells[J]. Sol Energy, 2019, 181(3): 161-168. |
117 | JUNG K K, DUONG N N, JAE-HOON L, et al. Carbon quantum dot-incorporated nickel oxide for planar p-i-n type perovskite solar cells with enhanced efficiency and stability[J]. J Alloys Compd, 2020, 818(3): 152887. |
118 | DANIELE B, EFAT J, YU C H, et al. Hole-extraction and photostability enhancement in highly efficient inverted perovskite solar cells through carbon dot-based hybrid material[J]. Nano Energy, 2019, 62(8): 781-790. |
[1] | BO Chun-Hui, JIANG Wei-Jia, WANG Yu-Gao, SHI Li-Hong, DONG Chuan. Research Progress on Synthesis of Coal-based Carbon Quantum Dots [J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 767-788. |
[2] | WEN Guang-Ming, JIAO Ting, DU Xiao-Yan, LI Zhong-Ping. Preparation and Application of Sulfur and Nitrogen Co-doped Carbon Quantum Dots [J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 722-730. |
[3] | HAO Li-Juan, WANG Ting, DONG Guo-Hua, ZHANG Wen-Zhi, BAI Li-Ming, DU Hai-Yao, LANG Kun, LI Xin. Preparation of Green Carbon Quantum Dots from Corn Starch and Hydrogen Ion/Hydroxyl Ion Regulated Fluorescent Switch Performance [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 202-211. |
[4] | YUAN Ting,MENG Ting,LI Shuhua,FAN Louzhen. Recent Development of Electroluminescent Diodes Based on Phosphorescent Materials [J]. Chinese Journal of Applied Chemistry, 2018, 35(8): 871-880. |
[5] | FU Peng,ZHOU Lihua,TANG Lianfeng,CAI Xixi,YUAN Yong. Progress in Preparation of Carbon Quantum Dots and Its Application in the Fields of Energy and Environment [J]. Chinese Journal of Applied Chemistry, 2016, 33(7): 742-755. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||