Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (12): 1803-1817.DOI: 10.19894/j.issn.1000-0518.220053
• Review • Previous Articles Next Articles
Wan-Nian ZHANG1, Fang YU2,3, Shan-Lin ZHAO1,3, Zhi-Qiang ZHANG1(), Yu-Peng HE1,2,3()
Received:
2022-03-01
Accepted:
2022-08-03
Published:
2022-12-01
Online:
2022-12-13
Contact:
Zhi-Qiang ZHANG,Yu-Peng HE
About author:
heyp_nbi@dlut.edu.cnSupported by:
CLC Number:
Wan-Nian ZHANG, Fang YU, Shan-Lin ZHAO, Zhi-Qiang ZHANG, Yu-Peng HE. Progress in Molecular Dynamics and Hansen Solubility Parameters of Low Molecular Weight Gels[J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1803-1817.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220053
Fig.2 (A) Molecular structure of FGC18 and the schematic illustration of hierarchical dendrite twist structure formed by FGC18; (B) Molecular dynamics simulation snapshots of FGC18 at different temperatures[32]
Fig.3 (A) Calculation model and mechanism of the self-assembly of pure lipids; (B) Self-assembly of chiral lipids; (C) “Induced conformation rearrangement” mechanism of homochiral nanotube from heterochiral lipids[35]
Fig.5 (A) Snapshots from an MD simulation of 160 pre-ordered gelator molecules in ethanol/water; (B) Snapshots from an MD simulation of the self-assembly of 50 gelator molecules in ethanol/water (V/V, 20/80) system[38]
Fig.6 (A) Molecular models illustrating the average configurations in the supramolecular columnar aggregates of BTECM[43]; (B) Snapshots of two tubules of sitosterol-oryzanol and sitosterol-CHEMS at the beginning or at the end of the course of the MD simulation[45]; (C) Hydrogen bonds, vdW interactions and π-π contacts between the ferulic acid groups of oryzanol on the interface of two tubules[45]
Fig.7 (A) Schematic diagram of the synthesis of LMWGs and fluoride ion response; (B) Snapshot of the self-assembly of the gel into fibrous structures after 1 μs MD simulation[46]
Fig.8 (A) The equilibrium states of gel self-assembly under different models by MD simulation; (B) The distribution of hydrogen bonds and π-π stacking under different models[47]
Fig.9 (A) Schematic of self-assembly of the 500SN gel; (B) Snapshots of simulation structures of the 500SN gel[52]; (C) The simulations indicate that four layers are required to produce a stable helicoid with the observed pitch and ribbon thickness[53]
Fig.10 (A) Aggregation propensity (APH)[27]; (B) Overall QSPR modelling, synthesis and testing workflow[55]; (C) Prediction of general trends in gel state with descriptors rSASA, F and HB%[56]
Fig.12 (A) Solubility data for 2.0% LMWGs in liquid mixtures represented in Hansen space with spheres/shells: blue (soluble), green (gel), and red (insoluble) [62]; (B) Schematic of the experimental setup (left) and the corresponding results in 3D Hansen space (right)[63]
1 | TERECH P, WEISS R G. Low molecular mass gelators of organic liquids and the properties of their gels[J]. Chem Rev, 1997, 97(8): 3133-3160. |
2 | LI Z, CAO J, LI H, et al. Self-assembled drug delivery system based on low-molecular-weight bis-amide organogelator: synthesis, properties and in vivo evaluation[J]. Drug Deliv, 2016, 23(8): 3168-3178. |
3 | LI J, GENG L, WANG G, et al. Self-healable gels for use in wearable devices[J]. Chem Mater, 2017, 29(21): 8932-8952. |
4 | 唐立宗, 张琳, 董云生, 等. 响应性水凝胶及其在生物医药领域应用研究进展[J]. 应用化学, 2021, 38(7): 743-753. |
TANG L Z, ZHANG L, DONG Y S, et al. Research progress on responsive hydrogels and their applications in biomedicines[J]. Chinese J Appl Chem, 2021, 38(7): 743-753. | |
5 | LIM J Y C, GOH S S, LIOW S S, et al. Molecular gel sorbent materials for environmental remediation and wastewater treatment[J]. J Mater Chem A, 2019, 7(32): 18759-18791. |
6 | TRAUSEL F, VERSLUIS F, MAITY C, et al. Catalysis of supramolecular hydrogelation[J]. Acc Chem Res, 2016, 49(7): 1440-1447. |
7 | SHANG C, WANG G, HE M, et al. A high performance fluorescent arylamine sensor toward lung cancer sniffing[J]. Sens Actuators B: Chem, 2017, 241: 1316-1323. |
8 | TANAKA A, FUKUOKA Y, MORIMOTO Y, et al. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator[J]. J Am Chem Soc, 2015, 137(2): 770-775. |
9 | LIU X, FEI J, WANG A, et al. Transformation of dipeptide-based organogels into chiral crystals by cryogenic treatment[J]. Angew Chem Int Ed, 2017, 56(10): 2660-2663. |
10 | CHIVERS P R A, SMITH D K. Shaping and structuring supramolecular gels[J]. Nat Rev Mater, 2019, 4(7): 463-478. |
11 | DRAPER E R, ADAMS D J. How should multicomponent supramolecular gels be characterised?[J]. Chem Soc Rev, 2018, 47(10): 3395-3405. |
12 | BACANI R. Gel characterization: from molecules to nanostructure to macroproperties[M]. Nano Design for Smart Gels, 2019: 141-206. |
13 | WU S, ZHANG Q, DENG Y, et al. Assembly pattern of supramolecular hydrogel induced by lower critical solution temperature behavior of low-molecular-weight gelator[J]. J Am Chem Soc, 2020, 142(1): 448-455. |
14 | DAMA M, BERGER S. Study of an organogelator by diffusion-ordered NMR spectroscopy[J]. J Phys Chem B, 2013, 117(18): 5788-5791. |
15 | ADAMS D J, MORRIS K, CHEN L, et al. The delicate balance between gelation and crystallisation: structural and computational investigations[J]. Soft Matter, 2010, 6(17): 4144-4156. |
16 | CICCHI S, GHINI G, LASCIALFARI L, et al. Self-sorting chiral organogels from a long chain carbamate of 1-benzyl-pyrrolidine-3,4-diol[J]. Soft Matter, 2010, 6(8): 1655-1661. |
17 | WEISS R G. Controlling variables in molecular gel science: how can we improve the state of the art?[J]. Gels, 2018, 4(2): 25. |
18 | DRAPER E R, ADAMS D J. Low-molecular-weight gels: the state of the art[J]. Chem, 2017, 3(3): 390-410. |
19 | OTOISHI Y, SUGITA Y. Metabolite-protein interactions in bacterial cytoplasm: all-atomic cytoplasm model and theoretical study by large-scale molecular dynamics calculations[J]. Ensemble, 2017, 19: 75-80. |
20 | BABU S S, PRAVEEN V K, AJAYAGHOSH A. Functional pi-gelators and their applications[J]. Chem Rev, 2014, 114(4): 1973-2129. |
21 | ZHANG W, WANG K, WANG C, et al. Enhanced oil recovery: QM/MM based descriptors for anionic surfactant salt-resistance[J]. Colloid Surface A, 2022, 641: 128422. |
22 | 刘旭, 李杨可欣, 杜黎, 等 水凝胶的制备及仿生设计在能源领域应用的研究进展[J]. 应用化学, 2022, 39(1): 35-54. |
LIU X, LI Y K X, DU L, et al. Bio⁃inspired hydrogels: synthesis, bionic design and applications in the field of energy storage and conversion[J]. Chinese J Appl Chem, 2022, 39(1): 35-54. | |
23 | 李胜男, 付俊. 水凝胶仿生柔性电子学[J]. 应用化学, 2022, 39(1): 55-73. |
LI S N, FU J. Biomimetic flexible hydrogel electronics[J]. Chinese J Appl Chem, 2022, 39(1): 55-73. | |
24 | SULIMOV A V, KUTOV D C, KATKOVA E V, et al. New generation of docking programs: supercomputer validation of force fields and quantum-chemical methods for docking[J]. J Mol Graph Model, 2017, 78: 139-147. |
25 | YAN Y, TAO H, HE J, et al. The HDOCK server for integrated protein-protein docking[J]. Nat Protoc, 2020, 15(5): 1829-52. |
26 | JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. |
27 | FREDERIX P W, SCOTT G G, ABUL-HAIJA Y M, et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels[J]. Nat Chem, 2015, 7(1): 30-37. |
28 | KULKARNI C, KOREVAAR P A, BEJAGAM K K, et al. Solvent clathrate driven dynamic stereomutation of a supramolecular polymer with molecular pockets[J]. J Am Chem Soc, 2017, 139(39): 13867-13875. |
29 | MATHESON A, DALKAS G, MEARS R, et al. Stable emulsions of droplets in a solid edible organogel matrix[J]. Soft Matter, 2018, 14(11): 2044-2051. |
30 | XING P, CHEN H, XIANG H, et al. Selective coassembly of aromatic amino acids to fabricate hydrogels with light irradiation-induced emission for fluorescent imprint[J]. Adv Mater, 2018, 30(5): 1705633. |
31 | CHRISTOFF-TEMPESTA T, LEW A J, ORTONY J H. Beyond covalent crosslinks: applications of supramolecular gels[J]. Gels, 2018, 4(2): 40. |
32 | CAO H, YUAN Q, ZHU X, et al. Hierarchical self-assembly of achiral amino acid derivatives into dendritic chiral nanotwists[J]. Langmuir, 2012, 28(43): 15410-15417. |
33 | GREEN MARK M, PETERSON NORMAN C, SATO T, et al. A helical polymer with a cooperative response to chiral information[J]. Science, 1995, 268(5219): 1860-1866. |
34 | LANGEVELD-VOSS B M W, WATERVAL R J M, JANSSEN R A J, et al. Principles of “majority rules” and “sergeants and soldiers” applied to the aggregation of optically active polythiophenes: evidence for a multichain phenomenon[J]. Macromolecules, 1999, 32(1): 227-230. |
35 | ZHU X, JIANG Y, YANG D, et al. Homochiral nanotubes from heterochiral lipid mixtures: a shorter alkyl chain dominated chiral self-assembly[J]. Chem Sci, 2019, 10(13): 3873-3880. |
36 | HUDA M M, RAI N. Probing early-stage aggregation of low molecular weight gelator in an organic solvent[J]. J Phys Chem B, 2020, 124(11): 2277-2288. |
37 | SU T, HONG K H, ZHANG W, et al. Scaleable two-component gelator from phthalic acid derivatives and primary alkyl amines: acid-base interaction in the cooperative assembly[J]. Soft Matter, 2017, 13(22): 4066-4073. |
38 | ANGELEROU M G F, FREDERIX P, WALLACE M, et al. Supramolecular nucleoside-based gel: molecular dynamics simulation and characterization of its nanoarchitecture and self-assembly mechanism[J]. Langmuir, 2018, 34(23): 6912-6921. |
39 | DASTIDAR P. Supramolecular gelling agents: can they be designed?[J]. Chem Soc Rev, 2008, 37(12): 2699-2715. |
40 | CHUANG P H, TSENG Y H, GU Q, et al. Phase behavior and electron transfer properties of ferrocenyl cholesteryl N-formanidoformamide gelator: a computational study[J]. Colloid Polym Sci, 2015, 293(7): 2113-2119. |
41 | KULKARNI C, MEIJER E W, PALMANS A R A. Cooperativity scale: a structure-mechanism correlation in the self-assembly of benzene-1,3,5-tricarboxamides[J]. Acc Chem Res, 2017, 50(8): 1928-1936. |
42 | ALEGRE-REQUENA J V, SALDIAS C, INOSTROZA-RIVERA R, et al. Understanding hydrogelation processes through molecular dynamics[J]. J Mater Chem B, 2019, 7(10): 1652-1673. |
43 | SHEN Z, JIANG Y, WANG T, et al. Symmetry breaking in the supramolecular gels of an achiral gelator exclusively driven by pi-pi stacking[J]. J Am Chem Soc, 2015, 137(51): 16109-16115. |
44 | SHEN Z, WANG T, LIU M. Macroscopic chirality of supramolecular gels formed from achiral tris(ethyl cinnamate) benzene-1, 3, 5-tricarboxamides[J]. Angew Chem Int Ed, 2014, 53(49): 13424-13428. |
45 | DALKAS G, MATHESON A B, VASS H, et al. Molecular interactions behind the self-assembly and microstructure of mixed sterol organogels[J]. Langmuir, 2018, 34(29): 8629-8638. |
46 | AYKENT G, ZEYTUN C, MARION A, et al. Simple tyrosine derivatives act as low molecular weight organogelators[J]. Sci Rep, 2019, 9(1): 4893. |
47 | ZHANG W, ZHANG Z, ZHAO S, et al. Pyromellitic-based low molecular weight gelators and computational studies of intermolecular interactions: a potential additive for lubricant[J]. Langmuir, 2021, 37(9): 2954-2962. |
48 | SINGHA N, SRIVASTAVA A, PRAMANIK B, et al. Unusual confinement properties of a water insoluble small peptide hydrogel[J]. Chem Sci, 2019, 10(23): 5920-5928. |
49 | SHI L, HAN Q. Molecular dynamics study of the influence of solvents on the structure and mechanical properties of poly(vinyl alcohol) gels[J]. J Mol Model, 2018, 24(11): 325. |
50 | VYAS S, KHAMBETE M, GUDHKA R, et al. Network topology of LMWG cross-linked xyloglucan hydrogels for embedding hydrophobic nanodroplets: mechanistic insight and molecular dynamics[J]. Drug Deliv Transl Res, 2020, 10(4): 1076-1084. |
51 | GUILBAUD-CHEREAU C, DINESH B, SCHURHAMMER R, et al. Protected amino acid-based hydrogels incorporating carbon nanomaterials for near-infrared irradiation-triggered drug release[J]. ACS Appl Mater Interfaces, 2019, 11(14): 13147-13157. |
52 | WANG Y, YU Q, BAI Y, et al. Self-constraint gel lubricants with high phase transition temperature[J]. ACS Sustain Chem Eng, 2018, 6(11): 15801-15810. |
53 | JONES C D, SIMMONS H T D, HORNER K E, et al. Braiding, branching and chiral amplification of nanofibres in supramolecular gels[J]. Nat Chem, 2019, 11(4): 375-381. |
54 | BAI Y, YU Q, ZHANG J, et al. Soft-nanocomposite lubricants of supramolecular gel with carbon nanotubes[J]. J Mater Chem A, 2019, 7(13): 7654-7663. |
55 | GUPTA J K, ADAMS D J, BERRY N G. Will it gel? successful computational prediction of peptide gelators using physicochemical properties and molecular fingerprints[J]. Chem Sci, 2016, 7(7): 4713-4719. |
56 | VAN LOMMEL R, ZHAO J, DE BORGGRAEVE W M, et al. Molecular dynamics based descriptors for predicting supramolecular gelation[J]. Chem Sci, 2020, 11(16): 4226-4238. |
57 | JONES C D, KENNEDY S R, WALKER M, et al. Scrolling of supramolecular lamellae in the hierarchical self-assembly of fibrous gels[J]. Chem, 2017, 3(4): 603-628. |
58 | HANSEN C. Hansen solubility parameters: a user's handbook, Second Edition[M]. USA: CRC Press, 2012. |
59 | 刘建强, 马婧. 用汉森溶解度参数评估功能化石墨烯在溶剂中的分散性[J]. 过程工程学报, 2019, 19(1): 189-194. |
LIU J Q, MA J. Evaluation of dispersion of functionalized graphene in solvents by Hansen solubility parameters[J]. Chinese J Process Eng, 2019, 19(1): 189-194. | |
60 | RAYNAL M, BOUTEILLER L. Organogel formation rationalized by Hansen solubility parameters[J]. Chem Commun, 2011, 47(29): 8271-8273. |
61 | ROSA NUNES D, RAYNAL M, ISARE B, et al. Organogel formation rationalized by Hansen solubility parameters: improved methodology[J]. Soft Matter, 2018, 14(23): 4805-4809. |
62 | YAN N, XU Z, DIEHN K K, et al. How do liquid mixtures solubilize insoluble gelators? self-assembly properties of pyrenyl-linker-glucono gelators in tetrahydrofuran-water mixtures[J]. J Am Chem Soc, 2013, 135(24): 8989-8999. |
63 | DIEHN K K, OH H, HASHEMIPOUR R, et al. Insights into organogelation and its kinetics from Hansen solubility parameters. Toward a priori predictions of molecular gelation[J]. Soft Matter, 2014, 10(15): 2632-2640. |
64 | LAN Y, CORRADINI M G, WEISS R G, et al. To gel or not to gel: correlating molecular gelation with solvent parameters[J]. Chem Soc Rev, 2015, 44(17): 6035-6058. |
65 | RIWAR L J, TRAPP N, KUHN B, et al. Substituent effects in parallel-displaced pi-pi stacking interactions: distance matters[J]. Angew Chem Int Ed, 2017, 56(37): 11252-11257. |
66 | EMAMIAN S, LU T, KRUSE H, et al. Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory[J]. J Comput Chem, 2019, 40(32): 2868-2881. |
67 | LU T, CHEN Q. Van der Waals potential: an important complement to molecular electrostatic potential in studying intermolecular interactions[J]. J Mol Model, 2020, 26(11): 315. |
68 | WEISS R G. The past, present, and future of molecular gels. what is the status of the field, and where is it going?[J]. J Am Chem Soc, 2014, 136(21): 7519-7530. |
[1] | YANG Kecheng, CUI Fengchao, LI Yunqi. Distribution and Dynamics of Water and Urea in Hydration Shell of Ribonuclease Sa:A Molecular Dynamics Simulation Study [J]. Chinese Journal of Applied Chemistry, 2018, 35(10): 1243-1248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||