[1] TAWFIK S M. Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part[J]. J Ind Eng Chem, 2015, 28: 171-183. [2] WANG Y K, JIANG Y J, GENG T, et al. Synthesis, surface/interfacial properties, and biological activity of amide-based gemini cationic surfactants with hydroxyl in the spacer group[J]. Colloids Surf A, 2019, 563: 1-10. [3] MENGER F M, KEIPER J S, AZOV V. Gemini surfactants with acetylenic spacers[J]. Langmuir, 2000, 16(5): 2062-2067. [4] SHARMA R, KAMAL A, ABDINEJAD M, et al. Advances in the synthesis, molecular architectures and potential applications of gemini surfactants[J]. Adv Colloid Interface Sci, 2017, 248: 35-68. [5] HASANOV E E, RAHIMOV R A, ABDULLAYEV Y, et al. New class of cocogem surfactants based on hexamethylenediamine, propylene oxide, and long chain carboxylic acids:theory and application[J]. J Ind Eng Chem, 2020, 86: 123-135. [6] ANDREOZZI P, PONS R, PÉREZ L, et al. Gemini surfactant binding onto hydrophobically modified silica nanoparticles[J]. J Phys Chem C, 2008, 112(32): 12142-12148. [7] YOUSEFI A, JAVADIAN S, NESHATI J. A new approach to study the synergistic inhibition effect of cationic and anionic surfactants on the corrosion of mild steel in HCl solution[J]. Ind Eng Chem Res, 2014, 53 (13): 5475-5489. [8] FENG L W, YIN C J, ZHANG H L, et al. Cationic Gemini surfactants with a bipyridyl spacer as corrosion inhibitors for carbon steel[J]. ACS Omega, 2018, 3(12): 18990-18999. [9] LUO X H, ZHONG J W, ZHOU Q L, et al. Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity[J]. ACS Appl Mater Interfaces, 2018, 10(21): 18400-18415. [10] 郭乃妮, 郑敏燕, 王天瑞, 等. 季铵盐Gemini表面活性剂在制革工业中的应用[J]. 皮革与化工. 2019, 36(4): 24-29. GUO N N, ZHENG M Y, WANG T R, et al. Application of quaternary ammonium gemini surfactant in leather industry[J]. Leather Chem, 2019, 36(4):24-29. [11] LV Q C, LI Z M, LI B F, et al. Study of nanoparticle surfactant-stabilized foam as a fracturing fluid[J]. Ind Eng Chem Res, 2015, 54(38): 9468-9477. [12] LI K X, JING X Q, HE S, et al. Static adsorption and retention of viscoelastic surfactant in porous media: EOR implication[J]. Energy Fuels, 2016, 30(11): 9089-9096. [13] FU L P, LIAO K L, GE J J, et al. Synergistic effect of sodium p-perfluorononenyloxybenzenesulfonate and alkanolamide compounding system used as cleanup additive in hydraulic fracturing[J]. Energy Fuels, 2020, 34(6): 7029-7037. [14] 刘学民, 宋聪, 王松营, 等. 含酰胺基Gemini阳离子表面活性剂的合成及性能[J]. 化学研究与应用, 2011, 23(2): 184-188. LIU X M, SONG C, WANG S Y, et al. Synthesis and properties of cationic Gemini surfactants with amide group[J]. Chem Res Appl, 2011, 23(2): 184-188. [15] 孙亚, 潘华, 韩富, 等. 头基含羟基的季铵盐双子表面活性剂的合成与性能[J]. 日用化学工业, 2019, 49(3): 135-140. SUN Y, PAN Ha, HAN F, et al. Synthesis and properties of quaternary ammonium gemini surfactants with hydroxyl in head groups[J]. China Surfactant Deterg Cosmet, 2019, 49(3): 135-140. [16] WU Z F, LI Y L, LI J, et al. Study on the properties and self-assembly of fatty alcohol ether carboxylic ester anionic surfactant and cationic surfactant in a mixed system[J]. New J Chem, 2019, 43(31): 12494-12502. [17] 郭辉, 庄玉伟, 庞海岩, 等. 合成季铵盐阳离子双子表面活性剂反应机理的红外光谱研究[J]. 光谱学与光谱分析, 2018, 38(10): 3-4. GUO H, ZHUANG Y W, PANG H Y, et al. Studies on the reaction mechanism of cationic quaternary ammonium gemini serfactant by IR spectroscopy[J]. Spectrosc Spectr Anal, 2018, 38(10): 3-4. [18] DAVEY T M, DUCKER W A, HAYMAN A R, et al. Krafft temperature depression in quaternary ammonium bromide surfactants[J]. Langmuir, 1998, 14(12): 3210-3213. [19] HOQUE J, AKKAPEDDI P, YARLAGADDA V, et al. Cleavable cationic antibacterial amphiphiles: synthesis, mechanism of action, and cytotoxicities[J]. Langmuir, 2012, 28(33): 12225-12234. [20] PEI X M, YOU Y, ZHAO J X, et al. Adsorption and aggregation of 2-hydroxyl-propanediyl-α,ω-bis(dimethyldodecyl ammonium bromide) in aqueous solution:effect of intermolecular hydrogen-bonding[J]. J Colloid Interface Sci, 2010, 351(2): 457-265. [21] LIU X M, LIAO X, ZHANG S H, et al. Physicochemical properties of noncovalently constructed sugar-based pseudogemini surfactants: evaluation of linker length influence[J]. J Chem Eng Data, 2019, 64(1): 60-68. [22] 罗森 M J, 乔伊 K T. 表面活性剂和界面现象[M]. 崔正刚,蒋建中,等译. 第4版. 北京:化学工业出版社,2014: 44-45. ROSEN M J, KUNJAPPU J T. Surfactants and interfacial phenomena[M]. CUI Z G, JIANG J Z, et al. Trans. 5th Ed. Trans. Beijing:Chemical Industry Press, 2014: 44-45. [23] XU D Q, NI X Y, ZHANG C Y, et al. Synthesis a nd properties of biodegradable cationic gemini surfactants with diester and flexible spacers[J]. J Mol Liq, 2017, 240: 542-548. [24] ABO-RIYA M, TANTAWY A H, EL-DOUGDOUG W. Synthesis and evaluation of novel cationic gemini surfactants based on guava crude fat as petroleum-collecting and dispersing agents[J]. J Mol Liq, 2016, 221: 642-650. [25] WANG G Y, QU W S, DU Z P, et al, Adsorption and aggregation behavior of tetrasiloxane-tailed surfactants containing oligo(ethylene oxide) methyl ether and a sugar moiety[J]. J Phys Chem B, 2011, 115(14): 3811-3818. |