Chinese Journal of Applied Chemistry ›› 2021, Vol. 38 ›› Issue (2): 136-156.DOI: 10.19894/j.issn.1000-0518.200250
• Review • Previous Articles Next Articles
WEI Xue-Ying, WU Wei*, NAI Yong-Ning, JIANG Meng-Yuan, TIAN Shi-Wei, MAO Guo-Liang
Received:
2020-08-22
Accepted:
2020-10-20
Published:
2021-02-01
Online:
2021-04-10
Supported by:
CLC Number:
WEI Xue-Ying, WU Wei, NAI Yong-Ning, JIANG Meng-Yuan, TIAN Shi-Wei, MAO Guo-Liang. Research Progress on the Selective Oligomerization of Ethylene Catalyzed by Phosphoramine Chromium and Diphosphinoamine Chromium[J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 136-156.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.200250
[1] WANG Z, LIU Q B, SUN W H, et al. Recent advances in Ni-mediated ethylene chain growth: N imine-donor ligand effects on catalytic activity thermal stability and oligo-/polymer structure[J]. Coord Chem Rev, 2017, 350:68-83. [2] CHEN L, LI G, WANG Z, et al. Ethylene oligomerization over nickel supported silica-alumina catalysts with high selectivity for C10+ products[J]. Catal, 2020, 10(2):180. [3] 王俊, 刘锦义, 陈丽铎, 等. 超支化双吡啶亚胺铬催化剂的合成及催化乙烯齐聚性能[J]. 应用化学, 2019, 36(7):773-781. WANG J, LIU J Y, CHEN L D, et al. Synthesis and ethylene oligomerization behavior of hyperbranched bispyridineimine chromium catalyst[J]. Chinese J Appl Chem, 2019, 36(7):773-781. [4] LI J, ZHANG Q, HU X, et al. 2-Acetyloxymethyl-substituted 5,6,7-trihydroquinolinyl-8-ylideneamine-Ni(II) chlorides and their application in ethylene dimerization/trimerization[J]. Appl Organomet Chem, 2020, 34(1):e5254. [5] 吴昊, 毛国梁, 王月含, 等. 乙烯齐聚工艺-从非选择性齐聚到选择性齐聚[J]. 化工科技, 2019, 27(1):83-90. WU H, MAO G L, WANG Y H, et al. Ethylene oligomerization technology from non-selective oligomerization to selective oligomerization[J]. Sci Technol Chem Ind, 2019, 27(1):83-90. [6] GRAUKE R, SCHEPPER R, RABEAH J, et al. Impact of Al activators on structure and catalytic performance of Cr catalysts in homogeneous ethylene oligomerization-a multitechnique in situ/operando study[J]. Chem Cat Chem, 2020, 12:1-2. [7] NEWLAND R J, SMITH A, SMITH D M, et al. Accessing alkyl- and alkenyl-cyclopentanes from Cr-catalysed ethylene oligomerization using 2-phosphinophosphinine ligands[J]. Organometallics, 2018, 37(6):1062-1073. [8] AZIMNAVAHSI L, MOHAMADNIA Z. Optimization of ethylenetrimerization using catalysts based on TiCl3/half-sandwich ligands[J]. Appl Organomet Chem, 2019, 33(2):e4666. [9] FALLAHI M, AHMADI E, MOHAMADNIA Z. Effect of inorganic oxide supports on the activity of chromium-based catalysts in ethylene trimerization[J]. Appl Organomet Chem, 2019, 33(8):e4975. [10] ALSA'DOUN A W. Dimerization of ethylene to butene-1 catalyzed by Ti(OR')4-AlR3[J]. Cheminform, 1993, 25(7):1-40. [11] LICCIULLI S, ALBAHILY K , FOMITCHEVA V , et al. A chromium ethylidene complex as a potent catalyst for selective ethylene trimerization[J]. Angew Chem, 2011, 50(10):2346-2355. [12] FREEMAN J W, BUSTER J L, KNUDSEN R D. Olefin production:US 5856257[P]. 1999. [13] YOSHIDA T, YAMAMOTO T, OKADA H , et al. Catalyst for trimerization of ethylene and process for trimerizing ethylene using the catalyst:US 0035029[P]. 2002. [14] ZHANG J, LI A, HOR T S A. Crystallographic revelation of the role of AlMe3 (in MAO) in Cr [NNN] pyrazolyl catalyzed ethylene trimerization[J]. Organometallics, 2009, 28(10):2935-2937. [15] 李雅丽. 南非Sasol公司成功投运全球首套乙烯四聚工业化生产装置[J]. 石油化工技术与经济, 2014, 30(2):61. LI Y L. South Africa Sasol company successfully put into operation the world's first ethylene tetramerization industrial production equipment[J]. Technol Econom Petrochem, 2014, 30(2):61-61. [16] WANG Z, SOLAN G A, SUN W H, et al. Carbocyclic-fused N,N,N-pincer ligands as ring-strain adjustable supports for iron and cobalt catalysts in ethylene oligo-/polymerization[J]. Coord Chem Rev, 2018, 363(6):92-108. [17] GONG M, LIU Z, LI Y, et al. Selective co-oligomerization of ethylene and 1-hexene by chromium-PNP catalysts: a DFT study[J]. Organometallics, 2016, 35(7):972-981. [18] YUAN S F, YAN Y, SUN W H, et al. Recent advancements in N-ligated group 4 molecular catalysts for the (co)polymerization of ethylene[J]. Coord Chem Rev, 2020, 411:213254-213269. [19] SVEJDA S A, BROOKHART M. Ethylene oligomerization and propylene dimerization using cationic (α-diimine)nickel(II) catalysts[J]. Organometallics, 2017, 18(1):65-74. [20] BARIASHIR C, HUANG C, SUN W H, et al. Recent advances in homogeneous chromium catalyst design for ethylene tri-, tetra-, oligo- and polymerization[J]. Coord Chem Rev, 2019, 385:208-229. [21] WU Q, WANG W, XU G, et al. Bulky iminophosphine-based nickel and palladium catalysts bearing 2,6-dibenzhydryl groups for ethylene oligo-/polymerization[J]. Appl Organomet Chem, 2020, 34:e5428. [22] WANG J, LIU J, CHEN L, et al. Preparation of chromium catalysts bearing bispyridylamine and its performance in ethylene oligomerization[J]. Trans Met Chem, 2019, 44(7):681-688. [23] CHEN L, HUO H, WANG J, et al. Ethylene oligomerization studies utilizing nickel complexes bearing pyridine-imine ligands[J]. Inorg Chim Acta, 2019, 491:67-75. [24] ZHANG L,WEI W, JIANG T, et al. Efficient chromium-based catalysts for ethylene tri-/tetramerization switched by silicon-bridged/N,P-based ancillary ligands: a structural, catalytic and DFT study[J]. Appl Petrochem Res, 2017, 7:5011-5088. [25] BOLLMANN A, BLANN K, DIXON J T, et al. Ethylene tetramerization: a new route to produce 1-octene in exceptionally high selectivities[J]. J Am Chem Soc, 2004, 126(45):14712-14713. [26] ZHOU Y, WU H, XU S, et al. Highly active chromium-based selective ethylene tri-/tetramerization catalysts supported by PNPO. phosphazane ligands[J]. Dalton Trans, 2015, 44(20):9545-9550. [27] TOBIAS, DIXON J T, HAUMANN M, et al. Trimerization and tetramerization of ethylene in continuous gas-phase reaction using a Cr-based supported liquid phase catalyst[J]. React Chem Eng, 2019, 4(1):131-140. [28] ZHANG L, MENG X, CHEN Y, et al. Chromium-based ethylene tetramerization catalysts supported by silicon-bridged diphosphine ligands:further combination of high activity and selectivity[J]. ChemCatChem, 2017, 9(1):76-79. [29] FERREIRA J, ZILZ R, BOEIRA I S, et al. Chromium complexes based on thiophene-imine ligands for ethylene oligomerization[J]. Appl Organomet Chem, 2019, 33(3):e4697. [30] ALFEROV K, BELOV G P, MENG Y, et al. Chromium catalysts for selective ethylene oligomerization to 1-hexene and 1-octene: recent results[J]. Appl Catal A-Gen, 2017, 542:71-124. [31] 刘清云, 高榕, 侯俊先, 等. P^N^P三齿铬配合物合成和结构及其催化乙烯齐聚与聚合[J]. 有机化学, 2013, 33(4):808-814. LIU Q Y, GAO R, HOU J X,et al. Tridentate P^N^P chromium complexes: synthesis, characterization and their ethylene oligomerization and polymerization[J]. Chinese J Org Chem, 2013, 33(4):808-814. [32] JIANG T, ZHANG S, JIANG X, et al. The effect of N-aryl bisphosphineamine ligands on the selective ethylene tetramerization[J]. J Mol Catal A Chem, 2008, 279(1):90-93. [33] CLOETE N,VISSER H G, ENGELBRECHT I, et al. Ethylene tri- and tetramerization: a steric parameter selectivity switch from X-ray crystallography and computational analysis[J]. Inorg Chem, 2013, 52(5):2268-2270. [34] NIFANTEV I E, VINOGRADOV A A, VINOGRADOV A A, et al. 5,6-Dihydrodibenzo[c,e][1,2]azaphosphinine-based PNP ligands, Cr(0) coordination, and Cr(III) precatalysts for ethylene oligomerization[J]. Organometallics, 2018, 37(16):2660-2664. [35] WANG J, GAO R, ZHANG N, et al. Novel dendritic PNP chromium complexes: synthesis, characterization, and performance on ethylene oligomerization[J]. Helv Chim Acta, 2017, 100(12):e1700162. [36] ALBAHILY K, GAMBAROTTA S, DUCHATEAU R. Ethylene oligomerization promoted by a silylated-SNS chromium system[J]. Organometallics, 2011, 30(17):4655-4664. [37] ALAM F, ZHANG L, JIANG T, et al. Catalytic systems based on chromium(III) silylated-diphosphinoamines for selective ethylene tri-/tetramerization[J]. ACS Catal, 2018, 8(11):10836-10845. [38] 刘睿, 钟向宏, 刘振宇, 等. N-四氢糠基PNP配体/铬催化体系及其乙烯选择性齐聚性能[J]. 有机化学, 2017, 37(9):2315-2321. LIU R,ZHOU X H, LIU Z Y, et al. Selective ethylene oligomerization catalyzed by the chromium complex bearing N-tetrahydrofurfuryl PNP ligand[J]. Chinese J Org Chem, 2017, 37(9):2315-2321. [39] HÄRZSCHEL S, KÜHN F E, ROSENTHAL U, et al. Comparative study of new chromium-based catalysts for the selective tri- and tetramerization of ethylene[J]. Catal Sci Technol, 2015, 5(3):1678-1682. [40] STENNETT T E, HEY T W,WASS D F, et al. N,N-diphospholylamines-a new family of ligands for highly active chromium-based selective ethene oligomerisation catalysts[J]. ChemCatChem, 2013, 5(10):2946-2954. [41] ZHOU Y, WU H,ZHANG J, et al. Highly active chromium-based selective ethylene tri-/tetramerization catalysts supported by PNPO phosphazane ligands[J]. Dalton Trans, 2015, 44(20):9545-9550. [42] JI X, SONG L, ZHANG C,et al. Highly active chromium-based selective ethylene tri-/tetramerization catalysts supported by N,N-diphospholylamines[J]. Inorg Chim Acta, 2017, 466:177-121. [43] 封智超, 毛国梁, 吴韦, 等. 基于5-氨基邻甲酚的膦配体的合成及在乙烯齐聚中的应用[J]. 有机化学, 2018, 38(3):698-704. FENG Z C, MAO G L, WU W, et al. Synthesis of phosphine ligands based on 5-amino-o-cresol and its application in ethylene oligomerization[J]. Chinese J Org Chem, 2018, 38(3):698-704. [44] KIM S, KIM T, CHUNG J, et al. Bimetallic ethylene tetramerization catalysts derived from chiral DPPDME ligands: syntheses, structural characterizations, and catalytic performance of [(DPPDME)CrCl3]2 (DPPDME=S,S- and R,R-chiraphos and meso-achiraphos)[J]. Organometallics, 2010, 29(22):5805-5811. [45] CHEREDILIN D N, SHELOUMOV A M, SENIN A A, et al. Catalytic properties of chromium complexes based on 1,2-bis(diphenylphosphino)benzene in the ethylene oligomerization reaction[J]. Petrol Chem, 2019, 59(1):72-78. [46] BOELTER S D, DAVIES D R, KLOSIN J, et al. Phospholane-based ligands for chromium-catalyzed ethylene tri- and tetramerization[J]. Organometallics, 2020, 39(7):967-987. [47] ZHANG C, SONG L, WU H,et al. Ethylene tri-/tetramerization catalysts supported by diphosphinothiophene ligands[J]. Dalton Trans, 2017, 46(26):8399-8404. [48] ZHANG J, WANG X, ZHANG X, et al. Switchable ethylene tri-/tetramerization with high activity: subtle effect presented by backbone-substituent of carbon-bridged diphosphine ligands[J]. ACS Catal, 2016, 3(10):2311-2317. [49] LEE H S, JOE Y, PARK H, et al. Chromium catalysts for ethylene trimerization/tetramerization functionalized with ortho-fluorinated arylphosphine ligand[J]. Catal Commun, 2019, 121:15-18. [50] 郑明芳, 吴红飞, 张军, 等. 含桥联多膦配体的双核Cr(Ⅲ)乙烯齐聚催化剂[J]. 石油化工, 2018, 47(9):924-928. ZHENG M F, WU H F, ZHANG J, et al. Ethylene oligomerization catalyzed by binuclear Cr catalyst based on a bridged phosphine ligand[J]. Pet Technol, 2018, 47(9):924-928. [51] 于部伟, 蒋岩, 牟玉强, 等. 氢气在Cr催化剂催化乙烯齐聚中的作用[J]. 精细石油化工, 2019, 36(6):11-13. YU B W, JIANG Y, MOU Y Q, et al. The role of hydrogen in Cr catalyst catalyzed oligomerization of ethylene[J]. Speciality Pet, 2019, 36(6):11-13. [52] 时鹏飞, 曹晨刚, 姜涛, 等. 氢气对铬系催化剂催化乙烯四聚制1-辛烯的影响[J]. 石油化工, 2015, 44(8):948-952. SHI P F, CAO C G, JIANG T, et al. Effect of hydrogen on ehylene tetramerization to 1-octene with Cr catalyst[J]. Petrochem Technol, 2015, 44(8):948-952. [53] HAGEN H, KRETSCHMER W P, BUREN F R V, et al. Selective ethylene trimerization: a study into the mechanism and the reduction of PE formation[J]. J Mol Catal A-C, 2006, 248(1):237-247. [54] 徐珂, 栗同林, 郑明芳, 等. 乙烯齐聚生产α-烯烃工艺中去除催化剂和聚乙烯的方法: 中国, 107151195 A[P]. 2016. XU K, LI T L, ZHENG M F, et al. Method for removing catalyst and polyethylene in process for producing α-olefin by ethylene oligomerization: CN, 107151195 A[P]. 2016. [55] JIANG T, ZHANG L, GAO J, et al. Hydrogen: efficient promoter for PNP/Cr(III)/MAO catalyzed ethylene tetramerization toward 1-octene[J]. Appl Pet R, 2016, 6(4): 1-5. [56] BAHRI-LALEH N, KARIMI M, KALANTARI Z, et al. H2 effect in Chevron-Phillips ethylene trimerization catalytic system: an experimental and theoretical investigation[J]. Polym Bull, 2017, 75(8):3555-3565. [57] LIU L, LIU Z, CHENG R, et al. Unraveling the effects of H2, N substituents and secondary ligands on Cr/PNP-catalyzed ethylene selective oligomerization[J]. Organometallics, 2018, 37(21):3893-3900. [58] STENNETT T E, HADDOW M F, WASS D F. Avoiding MAO:alternative activation methods in selective ethylene oligomerization[J]. Organometallics, 2012, 31(19):6960-6965. [59] MCGUINNESS D S, RUCKLIDGE A J, TOOZE R P, et al. Cocatalyst influence in selective oligomerization: effect on activity, catalyst stability, and 1-hexene/1-octene selectivity in the ethylene trimerization and tetramerization reaction[J]. Organometallics, 2007, 26(10):2561-2569. [60] HIRSCHER N A, AGAPIE T. Stoichiometrically activated catalysts for ethylene tetramerization using diphosphinoamine-ligated Cr tris(hydrocarbyl) complexes[J]. Organometallics, 2017, 36(21):4107-4110. [61] MCGUINNESS D S, BROWN D B , TOOZE R P , et al. Ethylene trimerization with CrPNP and CrSNS complexes: effect of ligand structure, metal oxidation state, and role of activator on catalysis[J]. Organometallics, 2006, 25(15):3605-3610. [62] KIM T H, LEE H M, JEONG M S, et al. Methylaluminoxane-free chromium catalytic system for ethylene tetramerization[J]. ACS Omega, 2017, 2(3):765-773. [63] KIM T H, LEE H M, PARK H S, et al. MAO-free and extremely active catalytic system for ethylene tetramerization[J]. Appl Organomet Chem, 2019, 33(4):e4829. [64] HIRSCHER N A, PEREZ S D, AGAPIE T. Robust chromium precursors for catalysis: isolation and structure of a single-component ethylene tetramerization precatalyst[J]. J Am Chem Soc, 2019, 141(14):6022-6029. [65] YANG Y, LIU Z, LIU B P, et al. Selective ethylene tri-/tetramerization by in situ-formed chromium catalysts stabilized by N,P-based ancillary ligand systems[J]. ACS Catal, 2013, 3(10):2353-2361. [66] AGAPIE T, SCHOFER S J, LABINGER J A, et al. Mechanistic studies of the ethylene trimerization reaction with chromium diphosphine catalysts: experimental evidence for a mechanism involving metallacyclic intermediates[J]. J Am Chem Soc, 2004, 126(5):1304-1305. [67] AGAPIE T, LABINGER J A, BERCAW J E. Mechanistic studies of olefin and alkyne trimerization with chromium catalysts: deuterium labeling and studies of regiochemistry using a model chromacyclopentane complex[J]. J Am Chem Soc, 2007, 129(46):14281-14295. [68] ARLMAN E J, COSSEE P. Ziegler-Natta catalysis III stereospecific polymerization of propene with the catalyst X system. TiCl3AlEt3[J]. J Catal, 1964, 3(1):99-104. [69] ALLEGRA G.Discussion on mechanism of polymerization of α-olefins with Ziegler-Natta catalysts[J]. Macromol Chem Phys, 1971, 145(1):235-246. [70] SUTTIL J A, MCGUINNESS D S. Mechanism of ethylene dimerization catalyzed by Ti(OR') 4 /AlR 3[J]. Organometallics, 2012, 31(19):7004-7010. [71] BELOV G P, DZHABIEV T S, KOLESNIKOV I M. Activation of C—H and C—C bonds in ethylene and piperylene catalytic reactions[J]. J Mol Catal, 1982, 14(1):105-112. [72] MANYIK R M, WALKER W E, WILSON T P. A soluble chromium-based catalyst for ethylene trimerization and polymerization[J]. J Catal, 1977, 47(2):197-209. [73] BRIGGS J R. The selective trimerization of ethylene to hex-1-ene[J]. J Chem Soc Chem Commun, 1989, 11(11): 674-675. [74] OVERETT M, BLANN K, BOLLMANN A, et al. Mechanistic investigations of the ethylene tetramerisation reaction[J]. J Am Chem Soc, 2005, 127(30):10723-10730. [75] BRITOVSEK G J, MCGUINNESS D S, WIERENGA T S, et al. Single- and double-coordination mechanism in ethylene tri- and tetramerization with Cr/PNP catalysts[J]. ACS Catal, 2015, 5(7):4152-4166. [76] KWON D, FULLER J T, KILGORE U J, et al. Computational transition-state design provides experimentally verified Cr(P,N) catalysts for control of ethylene trimerization and tetramerization[J]. ACS Catal, 2018, 8(2):1138-1142. [77] BOELTER S D, DAVIES D R, MARGL P M, et al. Phospholane-based ligands for chromium-catalyzed ethylene tri- and tetramerization[J]. Organometallics, 2020, 39(7):976-987. [78] HIRSCHER N A, LABINGER J A, AGAPIE T. Isotopic labelling in ethylene oligomerization: addressing the issue of 1-octene vs. 1-hexene selectivity[J]. Dalton Trans, 2019, 48(1):40-44. [79] PEITZ S, ALURI B, PEULECKE N, et al. An alternative mechanistic concept for homogeneous selective ethylene oligomerization of chromium-based catalysts: binuclear metallacycles as a reason for 1-octene selectivity?[J]. Chem Eur J, 2010, 16(26):7670-7676. [80] JABRI A, MASON C, SIM Y, et al. Isolation of single-component trimerization and polymerization chromium catalysts: the role of the metal oxidation state[J]. Angew Chem Int Ed, 2008, 47(50):9717-9721. [81] VIDYARATNE I, NIKIFOROV G B, GORELSKY S I, et al. Isolation of a self-activating ethylene trimerization catalyst[J]. Angew Chem Int Ed, 2009, 48(35):6552-6556. [82] ALBAHILY K, SHAIKH Y, SEBASTIAO E, et al. Vinyl oxidative coupling as a synthetic route to catalytically active monovalent chromium[J]. J Am Chem Soc, 2011, 133(16):6388-6395. [83] CARTER E, CAVELL K J, GABRIELLI W F, et al. Formation of [Cr(CO)x(Ph2PN(iPr)PPh2)]+ structural isomers by reaction of triethylaluminum with a chromium N,N-bis(diarylphosphino)amine complex [Cr(CO)4(Ph2PN(iPr)PPh2)]+: an EPR and DFT investigation[J]. Organometallics, 2013, 32(6):1924-1931. [84] RUCKLIDGE A J, MCGUINNESS D S, TOOZE R P, et al. Ethylene tetramerization with cationic chromium(I) complexes[J]. Organometallics, 2007, 26(10):2782-2787. [85] 宋闯, 毛国梁, 刘振华, 等. 均相Cr系催化剂催化乙烯选择性齐聚反应机理研究进展[J]. 有机化学, 2016, 36(9):2105-2120. SONG C, MAO G L, LIU Z H, et al. Advances in mechanistic research of ethylene selective oligomerization catalyzed by homogeneous chromium-based catalysts[J]. Chinese J Org Chem, 2016, 36(9):2105-2120. [86] MCGUINNESS, DAVID S. Olefin oligomerization via metallacycles: dimerization, trimerization, tetramerization, and beyond[J]. Chem Rev, 2011, 111(3):2321-2341. [87] WERNER J V R, CRONJÈG, STEYNBERG J P, et al. A DFT study toward the mechanism of chromium-catalyzed ethylene trimerization[J]. Organometallics, 2004, 23(6):1207-1222. [88] BHADURI S, MUKHOPADHYAY S, KULKARNI S A. Density functional studies on chromium catalyzed ethylene trimerization[J]. J Organomet Chem, 2009, 694(9/10):1297-1307. [89] KLEMPSl C, PAYET E, MAGNA L, et al. PCNCP ligands in the chromium-catalyzed oligomerization of ethylene: tri- versus tetramerization[J]. 2009, 15(33): 8259-8268. [90] BUDZELAAR P H M. Ethene trimerization at CrI/CrIII—a density functional theory (DFT) study[J]. Can J Chem, 2009, 87(7): 832-837. [91] LIU L, LIU Z, TANG S, et al. What triggered the switching from ethylene-selective trimerization into tetramerization over the Cr/(2,2'-dipicolylamine) catalysts?[J]. ACS Catal, 2019, 9(11):10519-10527. |
[1] | Bo-Yang CUI, Hong-Da WU, Zong-Bao YU, Zong-Xing GENG, Tie-Qiang REN, Chun-Wei SHI, Zhan-Xu YANG. Preparation of Molybdenum Phosphide⁃based Catalyst and Its Application in Water Electrolysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 439-450. |
[2] | LIU Zhaoyu, ZHU Haotian, LU Mingda, LI Xiaohui, AN Yue, ZHANG Lancui. Synthesis and Catalytic Activity of a Strandberg-type Molybdophosphate Modified by Organic Cations [J]. Chinese Journal of Applied Chemistry, 2015, 32(2): 214-220. |
[3] | YANG Liu, LU Mingda, ZHANG Lancui*, ZHANG Bai, SUN Hang, ZHU Zaiming*. Synthesis of Cyclohexanone Ethylene Ketal Catalyzed by Keggin Type Biimidazole Tungstogermanate [J]. Chinese Journal of Applied Chemistry, 2014, 31(11): 1310-1316. |
[4] | XU Yulin, GONG Wenpeng, YANG Shuijin*. Synthesis of 3,4-Dihydropyrimidine-2(1H)-one Derivatives Using Phosphotungstic Acid Supported on Silica as Catalyst [J]. Chinese Journal of Applied Chemistry, 2014, 31(10): 1203-1209. |
[5] | LV Renjiang, ZHANG Fuxiang, LI Yingjie*, WANG Lina, WU Jing, DING Li. Solvothermal Synthesis of Mesoporous Tungsten Oxide Materials with Special Morphology and Their Adsorptive Properties [J]. Chinese Journal of Applied Chemistry, 2013, 30(11): 1338-1342. |
[6] | CAO Xiaohua1,2, REN Jie1*, LIU Minsheng3*, XU Changlong2, YAN Ping2. Preparation of Tungstomolybdophosphate Acid with Dawson Structure and Its Catalytic Activity for the Synthesis of Adipic Acid via Hydrogen Peroxide Oxidaton of Cyclohexanone [J]. Chinese Journal of Applied Chemistry, 2012, 29(08): 915-920. |
[7] | CHEN Dan-Yun*, ZHOU Hui, YANG Xiao-Ke, HE Jian-Ying. Application of Recycled Lamp Tungsten Filament as Catalyst in the Oxidation of Cyclohexanone to Adipic Acid by H2O2 [J]. Chinese Journal of Applied Chemistry, 2010, 27(11): 1282-1285. |
[8] | ZHANG Gen-Cheng*, XU Jie-Yan. Studies on the interaction between chromium (VI) and bovine serum albumin [J]. Chinese Journal of Applied Chemistry, 2010, 27(02): 191-196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||