[1] LACEY M. What is “energy transition” and why does it matter to investors[EB/OL]. (2019-07-10)[2021-07-24]. https://www.schroders.com/en/insights/economics/what-is-energy-transition-and-why-does-it-matter-to-investors/. [2] WATT B E. Energy spectrum of neutrons from thermal fission of U235[J]. Phys Rev, 1952, 87(6): 1037-1041. [3] 高晓菊, 燕东明, 曹剑武, 等. 核防护用中子吸收材料的研究现状[J]. 陶瓷, 2016(11): 15-22. GAO X J, YAN D M, CAO J W, et al. Research status of neutron absorbers for nuclear protection[J]. Ceramics, 2016(11): 15-22. [4] SCHULTZ H, SASSE S. Analytic evaluations for the optimum selection and arrangement of shielding materials in reactor shields[J]. Nucl Eng Des, 1967, 6(5): 447-464. [5] HUNGERFORD H E. Problems in design of fast reactor shields[J]. Trans Am Nucl Soc, 1968, 11: 702. [6] 中国核能标准化技术委员会. 核设施辐射屏蔽设计一般原则: EJ/T 789-93[S]. 北京: 中国核工业总公司, 1994. China Committee for Standardization Technology of Nuclear Energy. General principles for radiation shielding of nuclear equipments. EJ/T 789-93[S]. Beijing: China National Nuclear Corporation, 1994. [7] 丁谦学. 多群蒙特卡罗方法在反应堆屏蔽设计中的应用[D]. 北京: 清华大学, 2009. DING Q X. Multi-group Monte Carlo for reactor shielding design[D]. Beijing: Tsinghua University, 2009. [8] 于志翔. 船用反应堆屏蔽设计优化研究及可视化程序开发[D]. 湖南: 南华大学, 2016. YU Z X. Optimization research on shielding design of marine reactor and development of visualization program[D]. Hunan: University of South China, 2016. [9] 张震宇, 赵世伦, 陈珍平, 等. 基于进化多目标遗传算法的辐射屏蔽优化方法研究[J]. 核动力工程, 2020, 41(S1): 124-129. ZHANG Z Y, ZHAO S L, CHEN Z P, et al. Study on radiation shielding optimization method based on multi-objective evolutionary genetic algorithm[J]. Nucl Power Eng, 2020, 41(S1): 124-129. [10] 杨寿海. 基于遗传算法的多目标智能辐射屏蔽方法研究[D]. 河北: 华北电力大学, 2012. YNAG S H. Research on the intelligent radiation shielding design method using the genetic algorithm[D].Hebei: North China Electric Power University, 2012. [11] 廖伶元. 屏蔽材料组分含量的优化设计[D]. 湖南: 南华大学, 2010. LIAO L Y. Optimized design of component content of shielding materials[D]. Hunan: University of South China, 2010. [12] 胡华四, 许浒, 张国光, 等. 新型核辐射屏蔽材料的优化设计[J]. 原子能科学技术, 2005, 39(4): 363-366. HU H S, XU H, ZHANG G G, et al. Optimization design of shielding materials for nuclear radiation[J]. At Energy Sci Technol, 2005, 39(4): 363-366. [13] HUNGERFORD H E. The nuclear, physical and mechanical properties of shielding materials[M]//TIPTON C R. JR. Reactor handbook, vol. 1: Materials. 2nd ed. Chap. 51, Interscience Publishers Ltd, New York, 1960. [14] KOMAROVSKII A N. Materials and construction of the shielding of nuclear installations[G]. Materialy i konstruktsii zashchit yadernykh ustanovok. Collection of Moscow Engineering and Construction Institute, 1971. [15] 何林, 蔡永军, 李强. 中子和伽马射线综合屏蔽材料研究进展[J]. 材料导报A: 综述篇, 2018, 32(4): 1107-1113. HE L, CAI Y J, LI Q. Research progress in radiation shielding materials serving as the combined barrier against neutron and gamma-ray[J]. Mater Rep A: Mater Rev, 2018, 32(4): 1107-1113. [16] 佴启亮, 郑文杰, 宋志刚, 等. 硼含量对含硼不锈钢组织和性能的影响[J]. 钢铁研究学报, 2013, 25(6): 53-57. ER Q L, ZHENG W J, SONG Z G, et al. Effect of boron content on microstructure and property of boron stainless steel[J]. J Iron Steel Res, 2013, 25(6): 53-57. [17] 张鹏. 高含量铝基碳化硼中子吸收材料的制备及性能研究[D]. 山西: 太原理工大学, 2014. ZHANG P. Preparation and properties of high content B4C/Al neutron absorber[D]. Shanxi: Taiyuan University of Technology, 2014. [18] 吕继新, 陈建廷. 高效能屏蔽材料铅硼聚乙烯[J]. 核动力工程, 1994, 15(4): 370-374. LV J X, CHEN J T. High effective shielding material lead-boron polyethylene[J]. Nucl Power Eng, 1994, 15(4): 370-374. [19] RAMI N, MEGHRAOUI H, ZIRAOUI R, et al. Influence of gamma irradiation on the chemical and physical properties of DGEDDS/PDA and DGEDDS/MDA epoxy resins[J]. J Mater Environ Sci, 2010, 1(4): 277-288. [20] CRACIUN E, ZAHARESCU T, JIPA S, et al. Gamma radiation effects on the stability of epoxy resin modified with titania nanoparticles[J]. Mater Plast, 2011, 48(1): 50-53. [21] JOSHI S, SNEHALATHA V, SIVASUBRAMANIAN K, et al. Radiation stability of epoxy-based gamma shielding material[J]. J Mater Eng Perform, 2019, 28(12): 7332-7341. [22] MORIOKA A, SATO A, OCHIAI K, et al. Neutron transmission experiment of boron-doped resin for the JT-60SC neutron shield using 2.45 MeV neutron[J]. J Nucl Sci Technol, 2004, 41(Suppl 4): 109-112. [23] MORIOKA A, SAKURAI S, OKUNO K, et al. Development of 300 ℃ heat resistant boron-loaded resin for neutron shielding[J]. J Nucl Mater, 2007, 367-370: 1085-1089. [24] SUKEGAWA A M, ANAYAMA Y, OHNISHI S, et al. Development of flexible neutron-shielding resin as an additional shielding material[J].J Nucl Sci Technol, 2011, 48(4): 585-590. [25] OKUNO K. Neutron shielding material based oncolemanite and epoxy resin[J]. Radiat Prot Dosim, 2005, 115(1-4): 258-261. [26] 李哲夫, 薛向欣. 含硼矿物及环氧树脂复合材料的中子屏蔽性能[J]. 原子能科学与技术, 2011, 45(2): 223-229. LI Z F, XUE X X. Neutron shielding properties of boron-containing ore and epoxy composites[J]. At Energy Sci Technol, 2011, 45(2): 223-229. [27] 陈飞达, 汤晓斌, 王鹏, 等. 新型纤维增强环氧树脂基复合材料研制及其中子屏蔽性能研究[J]. 原子能科学技术, 2012, 46(增): 703-707. CHEN F D, TANG X B, WANG P, et al. Preparation and neutron shielding performance of new type fiber reinforced polymer matrix composites[J]. At Energy Sci Technol, 2012, 46(Suppl): 703-707. [28] 姜懿峰,栾伟玲,张晓霓, 等. 环氧树脂基耐高温中子屏蔽复合材料的研究[J]. 核技术, 2015, 38(12): 120202. JIANG Y F, LUAN W L, ZHANG X N, et al. Preparation of AFG90-H epoxy resin-based temperature-resistant neutron shielding composite[J]. Nucl Tech, 2015, 38(12): 120202. [29] 张亚丽. 环氧树脂基辐射防护材料的制备及性能研究[D]. 南京: 南京航空航天大学, 2010. ZHANG Y L. Preparation and study of epoxy resin based radiation shielding materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. [30] SHIN J W, LEE J W, YU S, et al. Polyethylene/boron-containing composites for radiation shielding[J]. Thermochim Acta, 2014, 585: 5-9. [31] HARISH V, NAGAIAH N, PRABHU T N, et al. Preparation and characterization of lead monoxide filled unsaturated polyester based polymer composites for gamma radiation shielding applications[J]. J Appl Polym Sci, 2009, 112(3): 1503-1508. [32] PAVLENKO V I, LIPKANSKII V M, YASTREBINSKII R N. Calculations of the passage of gamma-quanta through a polymer radiation-protective composite[J]. J Eng Phys Thermophys, 2004, 77(1): 11-14. [33] ABDEL-AZIZ MM, BADRAN A S, ABDEL-HAKEM A A, et al. Styrene-butadiene rubber/lead oxide composites as gamma radiation shields[J]. J Appl Polym Sci 1991, 42(4): 1073-1080. [34] 陈兆彬, 周金向, 杨小牛. 环氧树脂基中子和γ射线屏蔽复合材料及其制备方法与应用: 201510140182.7[P]. 2017-11-17. CHEN Z B, ZHOU J X, YANG X N. Epoxy resin-based shielding composites for neutron and γ-ray attenuations and preparation and application therein: 201510140182.7[P]. 2017-11-17. [35] NAMBIAR S, YEOW J T W. Polymer-composite materials for radiation protection[J]. ACS Appl Mater Interfaces, 2012, 4(11): 5717-5726. [36] TEKINA H O, SINGH V P, MANICI T. Effects of micro-sized andnano-sized WO3 on mass attenuation coefficients of concrete by using MCNPX code[J]. Appl Radiat Isot, 2017, 121: 122-125. [37] KIM J, LEE B C, UHM Y R, et al. Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites[J]. J Nucl Mater, 2014, 453(1-3): 48-53. [38] KIM J, SEO D, LEE B C, et al. Nano-W dispersed gamma radiation shielding materials[J]. Adv Eng Mater, 2014, 16(9): 1083-1089. [39] MAHMOUD M E, EL-KHATIB A M, BADAWI M S, et al. Recycled high-density polyethylene plastics added with lead oxide nanoparticles as sustainable radiation shielding materials[J]. J Cleaner Prod, 2018, 176: 276-287. [40] IRIM S G, WIS AA, KESKIN M A, et al. Physical, mechanical and neutron shielding properties of h-BN/Gd2O3/HDPE ternary nanocomposites[J]. Radiat Phys Chem, 2018, 144: 434-443. [41] 董宇. 环氧树脂基纳米辐射防护材料的制备及性能研究[D]. 南京: 南京航空航天大学, 2013. DONG Y. Research on the preparations and shielding effects of epoxy resin-basednano radiation protection materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. [42] 李江苏. 核电工作和医用放射场所屏蔽低能光子的稀土基辐射防护材料的研究[D]. 南京: 南京航空航天大学, 2010. LI J S. RE-based shielding materials for low energy photon in nuclear power plant and medical care[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. [43] 张瑜. 基于金属功能粒子的高分子基辐射屏蔽材料制备及性能研究[D]. 南京: 南京航空航天大学, 2011. ZHANG Y. The preparation and radiation shielding effects of polymer materials based on the metal functional particles[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. [44] 盛博. 基于纳米功能元素协调分布的环氧树脂基辐射防护材料研究[D]. 南京: 南京航空航天大学, 2014. SHENG B. Preparation and study on synergistic functional elements modified epoxy radiation shielding materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. [45] 张政. 核用纳米功能材料的辐照制备及性能研究[D]. 南京: 南京航空航天大学, 2018. ZHANG Z. Study on radiation preparation and their properties of functional nanomaterials for nuclear application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. [46] 徐超, 陈胜, 汪信. 基于石墨烯的材料化学进展[J]. 应用化学, 2011, 28(1): 1-9. XU C, CHEN S, WANG X. Progress in the chemistry of materials based on grapheme[J]. Chinese J Appl Chem, 2011, 28(1): 1-9. [47] MARTINEZ-MORLANESM J, CASTELL P, ALONSO P J, et al. Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiated ultrahigh molecular weight polyethylene composites[J]. Carbon, 2012, 50(7): 2442-2452. [48] CLAYTON L M, GERASIMOV T G, CINKE M, et al. Dispersion of single-walled carbon nanotubes in a non-polar polymer, poly(4-methyl-1-pentene)[J]. J Nanosci Nanotechnol, 2006, 6(8): 2520-2524. [49] O′ROURKE MUISENER P A, CLAYTON L M, D′ANGELO J D, et al. Effects of gamma radiation on poly(methyl methacrylate)/single-wall nanotube composites[J]. J Mater Res, 2002, 17(10): 2507-2513. [50] 张红旭. 功能化碳纳米管/环氧树脂辐射防护材料制备及性能研究[D]. 南京: 南京航空航天大学, 2014. ZHANG H X. Preparation and study on functional carbon nanotubes/epoxy radiation shielding composite materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. [51] 夏伟. 石墨烯/环氧树脂复合涂层的制备及其在辐照环境中防腐性能研究[D]. 南京: 南京航空航天大学, 2016. XIA W. The preparation of grapheme/epoxy resin composites and the corrosion protection property under γ-radiation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. [52] IDA K. Resin composition containing rare earth element and its manufacture: JP60099150[P]. 1985-06-03. [53] YASUO K, NORIO H, NOBUKATSU W. Neutron absorbing and shielding material composition: JP60233154[P]. 1985-11-19. [54] 刘力. 稀土/高分子复合材料制备及其亚微观结构与发光、射线屏蔽及磁性能的关系研究[D]. 北京: 北京化工大学, 2004. LIU L. Preparation of rare earth/polymer composites and relationship between sub-microstructure and properties[D]. Beijing: Beijing University of Chemical Technology, 2004. [55] 董志华. 稀土/高分子射线屏蔽材料的制备和研究[D]. 北京: 北京化工大学, 2009. DONG Z H. Study on preparation of RE/polymer X-ray shielding composites[D]. Beijing: Beijing University of Chemical Technology, 2009. [56] 杨文峰, 刘颖, 杨林, 等. 核辐射屏蔽材料的研究进展[J]. 材料导报, 2007, 21(5): 82-85. YANG W F, LIU Y, YANG L, et al. Research progress in shielding materials for nuclear radiation[J]. Mater Rep, 2007, 21(5): 82-85. [57] 代旭之. 环氧树脂基辐射防护材料的制备及辐射屏蔽性能研究[D]. 湖南: 南华大学,2016. DAI X Z. Preparation and shielding properties of epoxy resin-based shielding materials[D]. Hunan: University of South China, 2016. [58] ANG P, TANG X, CHAI H, et al. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material[J]. Fusion Eng Des, 2015, 101: 218-225. [59] EL-KHATIB A M, ABBAS M I, ELZAHER M A, et al. Gamma attenuation coefficients of nano cadmium oxide/high density polyethylene composites[J]. Sci Rep, 2019, 9: 16012. [60] 曾小义, 黎泽伟. 核辐射综合屏蔽材料的研究进展及发展趋势[J]. 科学技术与工程, 2020, 20(35): 14352-14358. ZENG X Y, LI Z W. Research progress and development trend of combined shielding materials for nuclear radiation[J].Sci Technol Eng, 2020, 20(35): 14352-07. [61] CATALDO F, PRATA M. New composites for neutron radiation shielding[J]. J Radioanal Nucl Chem, 2019, 320(3): 831-839. [62] MIRJI R, LOBO B. Study of polycarbonate-bismuth nitrate composite for shielding against gamma radiation[J]. J Radioanal Nucl Chem, 2020, 324(1): 7-19. [63] THAKUR S, KAUR P, SINGH L. Investigation of polymethyl methacrylate incorporated neodymium oxide for gamma-ray and neutron shielding behavior[C]. AIP Conf Proc, 2019, 2142(1): 120007. |