[1] GU X, DING F, WILLIAMS D F. Neural tissue engineering options for peripheral nerve regeneration[J]. Biomaterials, 2014, 35(24): 6143-6156. [2] SCHMIDT C E, LEACH J B. Neural tissue engineering: strategies for repair and regeneration[J]. Annu Rev Biomed Eng, 2003, 5: 293-347. [3] GHASEMI-MOBARAKEH L, PRABHAKARAN M P, MORSHED M, et al. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering[J]. J Tissue Eng Regen Med, 2011, 5(4): e17-35. [4] GUO W, WANG S, YU X, et al. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells[J]. Nanoscale, 2016, 8(4): 1897-1904. [5] AKHAVAN O. Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system[J]. J Mater Chem B, 2016, 4(19): 3169-3190. [6] LI Y, HUANG G, ZHANG X, et al. Engineering cell alignment in vitro[J]. Biotechnol Adv, 2014, 32(2): 347-365. [7] SARKER M, NAGHIEH S, MCINNES A D, et al. Strategic design and fabrication of nerve guidance conduits for peripheral nerve regeneration[J]. Biotechnol J, 2018, 13(7): e1700635. [8] WANG J, XIONG H, ZHU T, et al. Bioinspired multichannel nerve guidance conduit based on shape memory nanofibers for potential application in peripheral nerve repair[J]. ACS Nano, 2020, 14(10): 12579-12595. [9] ASUNCION M C T, GOH J C, TOH S L. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing[J]. Mater Sci Eng C Mater Biol Appl, 2016, 67: 646-656. [10] HU X, HUANG J, YE Z, et al. A novel scaffold with longitudinally oriented microchannels promotes peripheral nerve regeneration[J]. Tissue Eng Part A, 2009, 15(11): 3297-3308. [11] ZHANG Q, ZHAO Y, YAN S, et al. Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons[J]. Acta Biomater, 2012, 8(7): 2628-2638. [12] FAN L, LI J L, CAI Z, et al. Creating Biomimetic anisotropic architectures with co-aligned nanofibers and macrochannels by manipulating ice crystallization[J]. ACS Nano, 2018, 12(6): 5780-5790. [13] YANG Y J, KWON Y, CHOI B H, et al. Multifunctional adhesive silk fibroin with blending of RGD-bioconjugated mussel adhesive protein[J]. Biomacromolecules, 2014, 15(4): 1390-1398. [14] YANAGISAWA S, ZHU Z, KOBAYASHI I, et al. Improving cell-adhesive properties of recombinant Bombyx mori silk by incorporation of collagen or fibronectin derived peptides produced by transgenic silkworms[J]. Biomacromolecules, 2007, 8(11): 3487-3492. [15] SOFIA S, MCCARTHY M B, GRONOWICZ G, et al. Functionalized silk-based biomaterials for bone formation[J]. J Biomed Mater Res, 2001, 54(1): 139-148. [16] LUCKANAGUL J, LEE L A, NGUYEN Q L, et al. Porous alginate hydrogel functionalized with virus as three-dimensional scaffolds for bone differentiation[J]. Biomacromolecules, 2012, 13(12): 3949-3958. [17] NGUYEN A T, SATHE S R, YIM E K. From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance[J]. J Phys Condens Matter, 2016, 28(18): 183001. [18] KHAN S P, AUNER G G, NEWAZ G M. Influence of nanoscale surface roughness on neural cell attachment on silicon[J]. Nanomedicine, 2005, 1(2): 125-129. [19] KAUR G, VALARMATHI M T, POTTS J D, et al. Regulation of osteogenic differentiation of rat bone marrow stromal cells on 2D nanorod substrates[J]. Biomaterials, 2010, 31(7): 1732-1741. [20] WU Y, FENG S, ZAN X, et al. Aligned electroactive TMV nanofibers as enabling scaffold for neural tissue engineering[J]. Biomacromolecules, 2015, 16(11): 3466-3472. [21] BAI S, ZHANG X, LU Q, et al. Reversible hydrogel-solution system of silk with high beta-sheet content[J]. Biomacromolecules, 2014, 15(8): 3044-3051. |