[1] | Plaquet A,Guillaume M,Champagne B,et al.Investigation on the Second-order Nonlinear Optical Responses in the Ketoenol Equilibrium of Anil Derivatives[J]. J Phys Chem C,2008,112(14):5638-5645. | [2] | Baleizão C,Garcia H. Chiral Salen Complexes:An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts[J]. Chem Rev,2006,106(9):3987-4043. | [3] | Lahiri D,Majumdar R,Mallick D,et al.Remarkable Photocytotoxicity in Hypoxic HeLa cells by a Dipyridophenazine Copper(Ⅱ) Schiff Base Thiolate[J]. J Inorg Biochem,2011,105(8):1086-1094. | [4] | Cimerman Z,Galic N,Bosner B. The Schiff Bases of Salicylaldehyde and Aminopyridines as Highly Sensitive Analytical Reagent[J]. Anal Chim Acta,1997,343(1/2):145-153. | [5] | Sytnik A, Del Valle J C. Steady-state and Time-resolved Study of the Proton-transfer Fluorescence of 4-Hydroxy-5-azaphenanthrenein Model Solvents and in Complexes with Human Serum Albumin[J]. J Phys Chem,1995,99(34):13028-13032. | [6] | Zapata F,Caballero A,Espinosa A,et al.A Simple but Effective Ferrocene Derivative as a Redox, Colorimetric, and luorescent Receptor for Highly Selective Recognition of Zn2+ Ions[J]. Org Lett,2007,9(12):2385-2388. | [7] | Li N,Xiang Y,Chen X,et al.Salicylaldehyde Hydrazones as Fluorescent Probes for Zinc Ion in Aqueous Solution of Physiological pH[J]. Talanta,2009,79(2):327-332. | [8] | Xu Z,Yoon J,Spring D R. Fluorescent Chemosensors for Zn2+[J]. Chem Soc Rev,2010,39(6):1996-2006. | [9] | Wang L N,Qin W W,Tang X L,et al.Development and Applications of Fluorescent Indicators for Mg2+ and Zn2+[J]. J Phys Chem A,2011,115(9):1609-1616. | [10] | Safin D A,Babashkina M G,Garcia Y. Crown Ether-containing Schiff Base as a Highly Efficient “turn-on” Fluorescent Sensor for Determination and Separation of Zn2+ in Water[J]. Dalton Trans,2013,42(6):1969-1972. | [11] | Khatua S,Choi S H,Lee J,et al.Highly Selective Fluorescence Detection of Cu2+ in Water by Chiral Dimeric Zn2+ Complexes Through Direct Displacement[J]. Inorg Chem,2009,48(5):1799-1801. | [12] | Khatua S,Kang J,Churchill D G. Direct Dizinc Displacement Approach for Efficient Detection of Cu2+ in Aqueous Media:Acetate Versus Phenolate Bridging Platforms[J]. New J Chem,2010,34(6):1163-1169. | [13] | Gou C,Qin S H,Wu H Q,et al.A HighlySelective Chemosensor for Cu2+ and Al3+ in Two Different Ways Based on Salicylaldehyde Schiff[J]. Inorg Chem Commun,2011,14(10):1622-1625. | [14] | Sinha S,Koner R R,Kumar S,et al.Imine Containing Benzophenone Scaffold as an Efficient Chemical Device to Detect Selectively Al3+[J]. RSC Adv,2013,3(2):345-351. | [15] | Upadhyay K K,Kumar A. Pyrimidine Based Highly Sensitive Fluorescent Receptor for Al3+ Showing Dual Signalling Mechanism[J]. Org Biomol Chem,2010,8(21):4892-4897. | [16] | Zhou L,Feng Y,Cheng J H,et al.Simple, Selective, and Sensitive Colorimetric and Ratiometric Fluorescence/Phosphorescence Probes for Platinum(Ⅱ) Based on Salen-type Schiff Bases[J]. RSC Adv,2012,2(28):10529-10536. | [17] | Xu Y,Meng J,Meng L X,et al.A Highly Selective Fluorescence-Based Polymer Sensor Incorporating an (R,R)-Salen Moiety for Zn2+ Detection[J]. Chem-Eur J,2010,16(43):12898-12903. | [18] | Song F Y,Ma X,Hou J L,et al.(R,R)-Salen/salan-based Polymer Fluorescence Sensors for Zn2+ Detection[J]. Polymer,2011,52(26):6029-6036. | [19] | Hou J L,Song F Y,Wang L,et al.In Situ Generated 1:1 Zn(Ⅱ)-containing Polymer Complex Sensor for Highly Enantioselective Recognition of N-Boc-protected Alanine[J]. Macromolecules,2012,45(19):7835-7842. | [20] | Li J F,Wu Y Z,Song F Y,et al.A Highly Selective and Sensitive Polymer-based OFF-ON Fluorescent Sensor for Hg2+ Detection Incorporating Salen and Perylenyl Moieties[J]. J Mater Chem,2012,22(2):478-482. | [21] | Song F Y,Wei G,Wang L,et al.Salen-based Chiral Fluorescence Polymer Sensor for Enantioselective Recognition of α-Hydroxyl Carboxylic Acids[J]. J Org Chem,2012,77(10):4759-4764. | [22] | Xu Y,Zheng L F,Huang X B,et al.Fluorescence Sensors Based on Chiral Polymer for Highly Enantioselective Recognition of Phenylglycinol[J]. Polymer,2010,51(5):994-997. | [23] | Cho Y S,Ihn C S,Lee H K,et al.Synthesis and Properties of Ruthenium-Coordinated Block Copolymers of 2-Vinylpyridine and Carbazole Derivatives[J]. Macromol Rapid Commun,2001,22(15):1249-1253. | [24] | Smith A P,Fraser C L. Luminescent Polymeric Ruthenium Complexes with Polystyrene-b-poly(methyl methacrylate) Macroligands:The Sequential Activation of Initiator Sites for Blocks Generated by Parallel Polymerization Mechanisms[J]. J Polym Sci Part A:Polym Chem,2002,40(23):4250-4255. | [25] | Cong Y,Fu J,Cheng Z,et al.Self-organization and Luminescent Properties of Nanostructured Europium(Ⅲ)-block Copolymer Complex Thin Films[J]. J Polym Sci Part B:Polym Phys,2005,43(16):2181-2189. | [26] | Chen B,Sleiman H F. Ruthenium Bipyridine-Containing Polymers and Block Copolymers via Ring-Opening Metathesis Polymerization[J]. Macromolecules,2004,37(16):5866-5872. | [27] | Wulff G,Akelah A. Synthesis of 5-Vinylsalicylaldehyde and a Simplified Synthesis of Some Divinyl Derivatives[J]. Makromol Chem,1979,179:2647-2651. | [28] | Lai J T,Filla D,Shea R. Functional Polymers from Novel Carboxyl-terminated Trithiocarbonates as Highly Efficient RAFT Agents[J]. Macromolecules,2002,35(18):6754-6756. | [29] | Wang Y,Goethals E J, Du Prez F E. Association Behavior between End-Functionalized Block Copolymers PEO-PPO-PEO and Poly(acrylic acid)[J]. Macromol Chem Phys,2004,205(13):1774-1781. | [30] | Xin Y,Yuan J Y. Schiff's Base as a Stimuli-responsive Linker in Polymer Chemistry[J]. Polym Chem,2012,3(11):3045-3055. | [31] | Zhao L Y,Sui D,Chai J,et al.Digital Logic Circuit Based on a Single Molecular System of Salicylidene Schiff Base[J]. J Phys Chem B,2006,110(48):24299-24304. | [32] | Wu J,Liu W,Zhuang X,et al.Fluorescence Turn on of Coumarin Derivatives by Metal Cations:A New Signaling Mechanism Based on C=N Isomerization[J]. Org Lett,2007,9(1):33-36. |
|