Chinese Journal of Applied Chemistry
• Review • Previous Articles Next Articles
CHEN Fan1, JIANG Caiyun2, YANG Jing1, JI Zufeng1, CUI Shihai1*
Received:
2012-12-10
Revised:
2013-03-18
Published:
2013-11-10
Online:
2013-11-10
Contact:
世海
CLC Number:
CHEN Fan1, JIANG Caiyun2, YANG Jing1, JI Zufeng1, CUI Shihai1*. Research Progress on the Applications of Iron-containing Nanomaterials in Environmental Remediation[J]. Chinese Journal of Applied Chemistry, DOI: 10.3724/SP.J.1095.2013.20572.
Add to citation manager EndNote|Ris|BibTeX
[1] Huber D L. Synthesis, Properties, and Applications of Iron Nanoparticles[J]. Small,2005,1(5):482-501.[2] Orth W S,Gillham R W. Dechlorination of Trichloroethene in Aqueous Solution Using Fe0[J]. Environ Sci Technol,1996,30(1):66-71.[3] Sayles G D,You G R,Wang M X,et al. DDT, DDD and DDE Dechlorination by Zero Valent Iron[J]. Environ Sci Technol,1997,31(12):3448-3454.[4] Zhang W X. Nanoscale Iron Particles for Environmental Remediation: An Overview[J]. J Nanopart Res,2003,5(3/4):323-332.[5] Liu Y Q,Majetich S A,Tilton R D. TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties[J]. Environ Sci Technol,2005,39(5):1338-1345.[6] Xu J,Dozier A,Bhattacharyya D. Synthesis of Nanoscale Bimetallic Particles in Polyelectrolyte Membrane Matrix for Reductive Transformation of Halogenated Organic Compounds[J]. J Nanopart Res,2005,7(4/5):449-467.[7] Alowitz M,Scherer M. Kinetics of Nitrate, Nitrite, and Cr(Ⅵ) Reduction by Iron Metal[J]. Environ Sci Technol,2002,36(3):299-306.[8] Kanel S R,Manning B,Charlet L,et al. Removal of Arsenic(Ⅲ) from Groundwater by Nanoscale Zero-Valent Iron[J]. Environ Sci Technol,2005,39(5):1291-1298. [9] Sohn K,Kang S W,Ahn S,et al. Fe(0) Nanoparticles for Nitrate Reduction:Stability, Reactivity, and Transformation[J]. Environ Sci Technol,2006,40(17):5514-5519. [10] Ponder S M,Darab J G,Mallouk T E. Remediation of Cr(Ⅵ) and Pb(Ⅱ) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron[J]. Environ Sci Technol,2000,34(12):2564-2569.[11] Cao J,Zhang W. Stabilization of Chromium Ore Processing Residue(COPR) with Nanoscale Iron Particles[J]. J Hazard Mater,2006,132(2/3):213-219.[12] Li X Q,Elliott D W,Zhang W X. Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants:Materials and Engineering Aspects[J]. Crit Rev Solid State Mater Sci,2006,31(4):111-122.[13] Li X Q,Zhang W X. Iron Nanoparticles:the Core-shell Structure and Unique Properties for Ni(Ⅱ) Sequestration[J]. Langmuir,2006,22(10):4638-4642.[14] Hardiljeet K B,Meera J,Denis M O. Kinetics and Thermodynamics of Cadmium Ion Removal by Adsorption onto Nano Zero-Valent Iron Particles[J]. J Hazard Mater,2011,186(1):458-465.[15] Tan G Q,Xiao D. Adsorption of Cadmiumion from Aqueous Solution by Ground Wheat Stems[J]. J Hazard Mater,2009,164(2/3):1359-1363.[16] Barkat M,Nibou D,Chearouche S,et al. Kinetics and Thermodynamics Studies of Chromium(Ⅵ) Ions Adsorption onto Activated Carbon from Aqueous Solutions[J]. Chem Eng Process,2009,48(1):38-47.[17] Chingombe P,Saha B,Wakeman R J. Sorption of Atrazine on Conventional and Surface Modified Activated Carbons[J]. J Colloid Interface Sci,2006,302(2):408-416.[18] WU Jia,TIAN Xiujun,WANG Jin,et al. Treatment of Cr(Ⅵ) in Deoxygenated Simulated Groundwater Using Nanoscale Zero-Valent Iron[J]. Environ Sci,2010,31(3):645-652(in Chinese).武甲,田秀君,王锦,等. 应用纳米零价铁处理模拟含Cr(Ⅵ)无氧地下水[J]. 环境科学,2010,31(3):645-652.[19] ZHANG Xin. Research Progress on Removal of Heavy Metal Ions from Aqueous Solution by Nanoscale Zero-valent Iron[J]. Chem Res,2010,21(3):97-100(in Chinese).张鑫. 纳米零价铁去除水中重金属离子的研究进展[J]. 化学研究,2010,21(3):97-100.[20] Perez-Marin A B,Zapata V M,Ortuno J F,et al. Removal of Cadmium from Aqueous Solutions by Adsorption onto Orange Waste[J]. J Hazard Mater,2007,139(1):122-131.[21] Benguella B,Benaissa H. Cadmium Removal from Aqueous Solutions by Chitin:Kinetic and Equilibrium Studies[J]. Water Res,2002,36(10):2463-2474.[22] ZHU Minping,WANG Xiangyu,LI Fang,et al. Research Progress on Nano-Iron Modification for the Dechlorination of Chlorinated Organics[J]. Chem Ind Eng Prog,2011,30(12):2747-2754(in Chinese).祝敏平,王向宇,李芳,等. 纳米铁的改性及其去除氯代有机物研究进展[J]. 化工进展,2011,30(12):2747-2754.[23] Matheson L J,Trantnyek P G. Reductive Dehalogenation of Chlorinated Urethanes by Iron[J]. Environ Sci Technol,1994,28(12):2045-2053.[24] Deng B,Burris D R,Campbell T J. Reductive of Vinyle Chloride in Metallic Iron-Water System[J]. Environ Sci Technol,1999,33(15):2651-2656.[25] LI Tielong. Preparation of Nanoscale Iron and Palladiumized Iron Particles and Their Application in Groundwater Remediation[D]. Tianjin:Nankai University,2006(in Chinese).李铁龙. 纳米铁及铁钯复合材料的制备与修复地下水基础研究[D]. 天津: 南开大学,2006.[26] Kharisov B I,Rasika Dias H V,Kharissova O V,et al. Iron-Containing Nanomaterials:Synthesis, Properties, and Environmental Applications[J]. RSC Adv,2012,2(25):9325-9358.[27] Zhang X,Lin Y M,Shan X Q. Degradation of 2,4,6-Trinitrotoluene(TNT) from Explosive Wastewater Using Nanoscale Zero-Valent Iron[J]. Chem Eng J,2010,158(3):566-570.[28] Shih Y H,Tai Y T. Reaction of Decabrominated Diphenyl Ether by Zerovalent Iron Nanoparticles[J]. Chemosphere,2010,78(10):1200-1206.[29] Wang Y,Zhou D M,Wang Y J,et al. Humic Acid and Metal Ions Accelerating the Dechlorination of 4-Chlorobiphenyl by Nanoscale Zero-Valent Iron[J]. J Environ Sci,2011,23(8):1286-1292.[30] Liu T Y,Zhao L,Tan X,et al. Effects of Physicochemical Factors on Cr(Ⅵ) Removal from Leachate by Zero-Valent Iron and Alpha-Fe2O3 Nanoparticles[J]. Water Sci Technol,2010,61(11):2759-2767.[31] Fang Z Q,Chen J H,Qiu X H,et al. Effective Removal of Antibiotic Metronidazole from Water by Nanoscale Zero-Valent Iron Particles[J]. Desalination,2011,268(1/3):60-67.[32] Johnson T L,Scherer M M,Tratnyek P G. Kinetics of Halogenated Organic Compound Degradation by Iron Metal[J]. Environ Sci Technol,1996,30(8):2634-2640.[33] James F,Nikos M,Mark K,et al. Electrochemical and Column Investigation of Iron-Mediated Reductive Dechlorination of Trichloroethylene and Perchloroethylene[J]. Environ Sci Technol,2000,34(12):2549-2556.[34] Gotpagar J,Lyuksyutov S,Cohn R,et al. Reductive Dehalogenation of Trichloroethylene with Zero-Valent Iron:Surface Profiling Microscopy and Rate Enhancement Studies[J]. Langmuir,1999,15(24):8412-8420.[35] Zhang W,Wang C,Lien H. Catalytic Reduction of Chlorinated Hydrocarbons by Bimetallic Particles[J]. Catal Today,1998,40(4):387-395.[36] Schrick B. The Development of Reading Fluency:A Review of Current Research[D]. Pennsylvania:Pennsylvania State University,2002.[37] Xu Y,Zhang W. Subcolloidal Fe/Ag Particles for Reductive Dehalogenation of Chlorinated Benzenes[J]. Ind Eng Chem Res,2000,39(7):2238-2244.[38] Elliott D W,Zhang W X. Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment[J]. Environ Sci Technol,2001,35(24):4922-4926.[39] Robert J B,Olga R,Murray N G,et al. Optimization of Nano-Scale Nickel/Iron Particles for the Reduction of High Concentration Chlorinated Aliphatic Hydrocarbon Solutions[J]. Chemosphere,2010,79(4):448-454.[40] Zhuang Y,Ahn S,Angelia L S,et al. Dehalogenation of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyl by Bimetallic, Impregnated, and Nanoscale Zerovalent Iron[J]. Environ Sci Technol,2011,45(11):4896-4903.[41] WANG Meng,JI Zufeng,CUI Shihai. 2,4-Dichlorophenol Degradation by Nanoscale Pd/Fe System[J]. J Nanjing Normal Univ(Nat Sci Edn),2012,35(1):4(in Chinese).王猛,吉祖峰,崔世海. 纳米钯/铁双金属对2,4-二氯酚的还原脱氯研究[J]. 南京师范大学学报(自然科学版),2012,35(1):4.[42] Gillham R W,O′Hannesin S F. Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron[J]. Ground Water,1994,32(6):958-967.[43] Orth S W,Gillham R W. Dechlorination of Trichlorethene in Aqueous Solution Using Fe(0)[J]. Environ Sci Technol,1996,30(1):66-71.[44] Wang C B,Zhang W X. Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs[J]. Environ Sci Technol,1997,31(7):2154-2156.[45] Schrick B,Hydutsky B W,Blough J L,et al. Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater[J]. Chem Mater,2004,16(11):2187-2193.[46] Sunkara B,Zhan J J,He J B,et al. Nanoscale Zerovalent Iron Supported on Uniform Carbon Microspheres for the in Situ Remediation of Chlorinated Hydrocarbons[J]. ACS Appl Mater Interfaces,2010,2(10):2854-2862.[47] Liu X T,Quan X,Bo L L,et al. Simultaneous Pentachlorophenol Decomposition and Granular Activated Carbon Regeneration Assisted by Microwave Irradiation[J]. Carbon,2004,42(2):415-422.[48] Zhu H J,Jia Y F,Wu X,et al. Removal of Arsenite from Drinking Water by Activated Carbon Supported Nano Zero-Valent Iron[J]. Environ Sci,2009,30(6):1644-1648.[49] Dou X M,Li R,Zhao B,et al. Arsenate Removal from Water by Zero-Valent Iron/Activated Carbon Galvanic Couples[J]. J Hazard Mater,2010,182(1/3):108-114.[50] Shahwan T,Uzüm C,Eroglu A E,et al. Synthesis and Characterization of Bentonite/Iron Nanoparticles and Their Application as Adsorbent of Cobalt Ions[J]. Appl Clay Sci,2010,47(3/4):257-262.[51] Shi L N,Zhang X,Chen Z L. Removal of Chromium(Ⅵ) from Wastewater Using Bentonite-Supported Nanoscale Zero-Valent Iron[J]. Water Res,2011,45(2):886-892.[52] Li S Z,Wu P X,Li H L,et al. Synthesis and Characterization of Organo-Montmorillonite Supported Iron Nanoparticles[J]. Appl Clay Sci,2010,50(3):330-336.[53] Shahwan T,Hallamb K R,Scott T B,et al. Synthesis and Characterization of Kaolinite-Supported Zero-Valent Iron Nanoparticles and Their Application for the Removal of Aqueous Cu2+ and Co2+ Ions[J]. Appl Clay Sci,2009,43(2):172-181.[54] Qiu X H,Fang Z Q,Liang B,et al. Degradation of Decabromodiphenyl Ether by Nano Zero-Valent Iron Immobilized in Mesoporous Silica Microspheres[J]. J Hazard Mater,2011,193(15):70-81.[55] Wang W,Zhou M H,Jin Z H,et al. Reactivity Characteristics of Poly(Methyl Methacrylate) Coated Nanoscale Iron Particles for Trichloroethylene Remediation[J]. J Hazard Mater,2010,173(1/3):724-730.[56] Lin Y H,Tseng H H,Wey M Y,et al. Characteristics of Two Types of Stabilized Nano Zero-Valent Iron and Transport in Porous Media[J]. Sci Total Environ,2010,408(10):2260-2267.[57] Jiang Z M,Lv L,Zhang W M,et al. Nitrate Reduction Using Nanosized Zero-Valent Iron Supported by Polystyrene Resins:Role of Surface Functional Groups[J]. Water Res,2011,45(6):2191-2198.[58] Lee D W,Yu J H,Jang T,et al. Enhanced Oxidation Resistance of Iron Nanoparticles via Surface Modification in Chemical Vapor Condensation Process[J]. J Mater Sci Technol,2010,26(4):367-370.[59] Chen J W,Xiu Z M,Lowry G V,et al. Effect of Natural Organic Matter on Toxicity and Reactivity of Nano-Scale Zero-Valent Iron[J]. Water Res,2011,45(5):1995-2001.[60] Li Z Q,Greden K,Alvarez P J J,et al. Adsorbed Polymer and NOM Limits Adhesion and Toxicity of Nano Scale Zerovalent Iron to E.coli[J]. Environ Sci Technol,2010,44(9):3462-3467.[61] Reinsch B C,Forsberg B,Penn R L,et al. Chemical Transformations During Aging of Zerovalent Iron Nanoparticles in the Presence of Common Groundwater Dissolved Constituents[J]. Environ Sci Technol,2010,44(9):3455-3461. |
[1] | NIU Zhan-Ning, TANG Hao-Qing, ZHENG Chao, TIAN Tian, ZHENG Li-Yun. Study on [RESA]Br@-COOH@Fe3O4 with Density Functional Theory [J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 825-835. |
[2] | WEI Zhenye, MENG Junling, WANG Haocong, ZHANG Wenwen, LIU Xiaojuan, MENG Jian. Improving the Electrocatalytic Activity of La2NiO4+δ Cathode by Surface Modification with Conformal Heterojunction [J]. Chinese Journal of Applied Chemistry, 2020, 37(8): 939-951. |
[3] | XU Xiaolong, WANG Suijun, JIN Yi, WANG Hao. Mesoporous Carbon Matrix Suppressing Dendritic Growth of Lithium Battery Anode [J]. Chinese Journal of Applied Chemistry, 2020, 37(6): 703-708. |
[4] | LI Jing,WU Haibo,WANG Yu,YANG Huamei,SONG Ming,DU Xihua,ZHANG Yongcai. Preparation and Enhanced Visible-Light Photocatalytic Activity of Bismuth Tungstate/Graphitic Carbon Nitride Composite Modified by Bi2WO6 Quantum Dots and Nanosheets [J]. Chinese Journal of Applied Chemistry, 2019, 36(11): 1275-1285. |
[5] | LI Jing, WU Haibo, WANG Yu, YANG Huamei, SONG Ming, DU Xihua, ZHANG Yongcai. Preparation and Enhanced Visible-Light Photocatalytic Activity of Bismuth Tungstate/Graphitic Carbon Nitride Composite Modified by Bi2WO6 Quantum Dots and Nanosheets [J]. Chinese Journal of Applied Chemistry, 2019, 36(11): 0-0. |
[6] | ZHANG Zhefeng, HUANG Xiaodong, WEN Liping. Inspired by Self-cleaning Effect of Lotus Leaf: Surface Modification and Antifouling Performance with Surgical Clothing [J]. Chinese Journal of Applied Chemistry, 2019, 36(1): 34-40. |
[7] | YE Lifang,WU Quanzhou. Modification of Ordered Macroporous Silica by a Functional Polymer Layer and Immobilization of Glucoamylase on the Macropore Walls [J]. Chinese Journal of Applied Chemistry, 2018, 35(11): 1309-1316. |
[8] | HOU Shuhua,WANG Xue,DONG Xue,HONG Keli,BIAN Yanjing,TANG Lijun. Research Progress in Antifouling Polymeric Separation Membranes [J]. Chinese Journal of Applied Chemistry, 2017, 34(5): 502-511. |
[9] | JIN Xuan, LI Ying, LI Xin, YU Zhike, ZHANG Tianyu, DING Zhongyang, SHI Gang. Effect of Pretreatment Methods of Rice Straw on Straw Board Properties [J]. Chinese Journal of Applied Chemistry, 2016, 33(4): 430-435. |
[10] | LIU Xiangdong, SHENG Dekun, GAO Xiumei, YANG Yuming*. Effect of Air Corona Discharge Irradiation on the Surface Composition and Morphology of the Polyester Film [J]. Chinese Journal of Applied Chemistry, 2013, 30(07): 750-756. |
[11] | XU Chao, CHEN Sheng, WANG Xin*. Progress in the Chemistry of Materials Based on Graphene [J]. Chinese Journal of Applied Chemistry, 2011, 28(01): 1-9. |
[12] | QIAO Heng-Ting, XIA Ru, ZHANG Yu-Chuan*. Synthesis of Tercopolymer MAn-BA-St and Its Surface Modification for Nano-AlN with this Macromolecular Coupling Agent [J]. Chinese Journal of Applied Chemistry, 2010, 27(01): 16-20. |
[13] | Zhang Liang, Wang Jianqi, Zhang Xinsheng. Studies of the Surface Property and Dynamics of PET Under CF4/CH4 Plasma Treatment Ⅲ.Application of the Surface Energy Method in Surface Dynamics Research [J]. Chinese Journal of Applied Chemistry, 1998, 0(2): 88-90. |
[14] | Wang Bin, Wang Degui, Lu Zhaoda. Surface Modification of Nitrile Butadiene Rubber by Fluorination with XeF2 [J]. Chinese Journal of Applied Chemistry, 1997, 0(5): 51-54. |
[15] | Zhao Dongyu, Li Binyao, Yu Fusheng . Modification of Carbon Fiber Surface with Mixed Acid [J]. Chinese Journal of Applied Chemistry, 1997, 0(4): 114-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||