| [1] |
GUO R Q, ZHANG M Q, DING J Q, et al. Advances in colloidal quantum dot-based photodetectors[J]. J Mater Chem C, 2022, 10: 7404-7422.
|
| [2] |
WU H B, NING Z J. Tutorial: lead sulfide colloidal quantum dot infrared photodetector[J]. J Appl Phys, 2023, 133: 041101.
|
| [3] |
LIU M X, YAZDANI N, YAREMA M, et al. Colloidal quantum dot electronics[J]. Nat Electron, 2021, 4: 548-558.
|
| [4] |
张萍萍, 杨高岭, 康果果, 等. 量子点光刻技术及其显示应用[J]. 应用化学, 2021, 38(9): 1175-1188.
|
|
ZHANG P P, YANG G L, KANG G G, et al. Photolithography of colloidal quantum dots for display applications[J]. Chin J Appl Chem, 2021, 38(9): 1175-1188.
|
| [5] |
彭孔浩, 白安琪, 孟颖, 等. 纳米材料传感器在有机磷农药残留检测中的研究进展[J]. 应用化学, 2024, 41(4): 472-483.
|
|
PENG K H, BAI A Q, MENG Y, et al. Research progress of nanomaterial sensors in the detection of organophosphorus pesticide residues[J]. Chin J Appl Chem, 2024, 41(4): 472-483.
|
| [6] |
SHU Y F, LIN X, QIN H Y, et al. Quantum dots for display applications[J]. Angew Chem Int Ed, 2020, 132(50): 22496-22507.
|
| [7] |
SAHU A, KUMAR D. Core-shell quantum dots: a review on classification, materials, application, and theoretical modeling[J]. J Alloys Compd, 2022, 924: 166508.
|
| [8] |
HULLAVARAD N V, HULLAVARAD S S, KARULKAR P C. Cadmium sulphide (CdS) nanotechnology: synthesis and applications[J]. J Nanosci Nanotechnol, 2008, 8(7): 3272-3299.
|
| [9] |
REDDY C V, SHIM J, CHO M. Synthesis, structural, optical and photocatalytic properties of CdS/ZnS core/shell nanoparticles[J]. J Phys Chem Solids, 2017, 103: 209-217.
|
| [10] |
PAN D, WANG Q, PANG J, et al. Semiconductor “nano-onions” with multifold alternating CdS/CdSe or CdSe/CdS structure[J]. Chem Mater, 2006, 18(18): 4253-4258.
|
| [11] |
IVANOV S, PIRYATINSKI A, NANDA J, et al. TypeⅡ core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties[J]. J Am Chem Soc, 2007, 129(38): 11708-11719.
|
| [12] |
DAS D, HUSSAIN A M P. Effect of molarities on structural and optical properties of type-Ⅱ heterostructure CdS/PbS core/shell quantum dot[J]. Appl Phys A, 2019, 125: 826.
|
| [13] |
LING T, JARONIEC M, QIAO S Z. Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions[J]. Adv Mater, 2020, 32(46): 2001866.
|
| [14] |
TRIZIO L D, MANNA L. Forging colloidal nanostructures via cation exchange reactions[J]. Chem Rev, 2016, 116: 10852-10887.
|
| [15] |
CHERIE R K, LEE C B, CHRISTOPHER B M, et al. Colloidal quantum dots as platforms for quantum information science[J]. Chem Rev, 2021, 121(5): 3186-3233.
|
| [16] |
JIN X, XIE K L, ZHANG T T, et al. Cation exchange assisted synthesis of ZnCdSe/ZnSe quantum dots with narrow emission line widths and near-unity photoluminescence quantum yields[J]. Chem Commun, 2020, 56: 6130-6133.
|
| [17] |
CASAVOLA M, HUIS M A, BALS S, et al. Anisotropic cation exchange in PbSe/CdSe core/shell nanocrystals of different geometry[J]. Chem Mater, 2012, 24(2): 294-302.
|
| [18] |
LI H, BRESCIA R, KRAHNE R, et al. Blue-UV-emitting ZnSe(dot)/ZnS(rod) core/shell nanocrystals prepared from CdSe/CdS nanocrystals by sequential cation exchange[J]. ACS Nano, 2012, 6(2): 1637-1647.
|
| [19] |
GRODZINSKA D, PIETRA F, HUIS M A, et al. Thermally induced atomic reconstruction of PbSe/CdSe core/shell quantum dots into PbSe/CdSe bi-hemisphere hetero-nanocrystals[J]. J Mater Chem, 2011, 21(31): 11556-11565.
|
| [20] |
ZAIATS G, SHAPIRO A, YANOVER D, et al. Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots[J]. J Phys Chem Lett, 2015, 6(13): 2444-2448.
|
| [21] |
GEYTER B D, HENS Z. The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots[J]. Appl Phys Lett, 2010, 97(16): 161908.
|
| [22] |
ZHANG Y, DAI Q, LI X, et al. PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence[J]. Langmuir, 2011, 27(15): 9583-9587.
|
| [23] |
ZHANG Y, DAI Q, LI X, et al. Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals[J]. J Nanopart Res, 2011, 13(9): 3721-3729.
|
| [24] |
ABEL K A, FITZGERALD P A, WANG T Y, et al. Probing the structure of colloidal core/shell quantum dots formed by cation exchange[J]. J Phys Chem C, 2012, 116(6): 3968-3978.
|
| [25] |
LI D, ZHANG X, RAMZAN M, et al. Colloidal synthesis of giant shell PbSe-based core/shell quantum dots in polar solvent: cation exchange versus epitaxial growth[J]. Chem Mater, 2020, 32(15): 6650-6656.
|
| [26] |
ZHONG X, LIU S, ZHANF Z, et al. Synthesis of high-quality CdS, ZnS, and ZnxCd1- xS nanocrystals using metal salts and elemental sulfur[J]. J Mater Chem, 2004, 14: 2790-2794.
|
| [27] |
LI H Y, BIAN L H, GU K, et al. A near-infrared miniature quantum dot spectrometer [J]. Adv Opt Mater, 2021, 9: 2100376.
|
| [28] |
LI D, HUANG S, ZHANG X, et al. Colloidal CdxM1- xTe nanowires from the visible to the near infrared region: N,N‑dimethylformamide-mediated precise cation exchange[J]. J Phys Chem Lett, 2020, 11(1): 7-13.
|
| [29] |
HU J, SHI Y, ZHANG Z, et al. Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots[J]. Chin Phys B, 2019, 28(2): 020701.
|
| [30] |
LU Q, XU L, REN Y, et al. Fast response self-powered UV-Vis-NIR broadband photodetector based on a type heterojunction of AgIn5Se8/FePSe3[J]. ACS Appl Electron Mater, 2022, 4(11): 5284-5291.
|
| [31] |
YANG X, QU L, GAO F, et al. High-performance broadband photoelectrochemical photodetectors based on ultrathin Bi2O2S nanosheets[J]. ACS Appl Mater Interfaces, 2022, 14(5): 7175-7183.
|
| [32] |
XUE R, SHAO Z, YANG X, et al. Self-powered photoelectrochemical photodetectors based on electrochemically exfoliated In2Se3 nanosheets[J]. ACS Appl Nano Mater, 2022, 5(5): 7036-7041.
|
| [33] |
LI J, WANG Z, WEN Y, et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets[J]. Adv Funct Mater, 2018, 28: 1706437.
|
| [34] |
XING C, LI Z, BANG J, et al. One-dimensional TeSe nano-heterojunction: formation, calculations, carrier dynamics, and application in broad-spectrum photodetectors[J]. Nanoscale, 2023, 15: 8800-8813.
|