
Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (3): 321-329.DOI: 10.19894/j.issn.1000-0518.240222
• Full Papers • Previous Articles Next Articles
Jie-Xia CHEN, Zhuo-Er LIU, Chang-Ning LU, Ke-Xin YANG, Zi-Yan CHEN, Yan WEI()
Received:
2024-07-21
Accepted:
2025-01-21
Published:
2025-03-01
Online:
2025-04-11
Contact:
Yan WEI
About author:
yanwei@wnmc.edu.cnSupported by:
CLC Number:
Jie-Xia CHEN, Zhuo-Er LIU, Chang-Ning LU, Ke-Xin YANG, Zi-Yan CHEN, Yan WEI. Construction of a Photoelectrochemical Biosensor Based on ZnS-Modified Electrode for the Determination of L-Cysteine[J]. Chinese Journal of Applied Chemistry, 2025, 42(3): 321-329.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240222
Method | Linear range/(mol·L-1) | Detection limit/(mol·L-1) | Ref. |
---|---|---|---|
Capillary electrophoresis | 1.0×10-6~5.0×10-4 | 8.76×10-7 | [ |
Fluorescence | 0~0.135×10-3 | 5.7×10-6 | [ |
Electrogenerated chemiluminescence | 10.0×10-6~100×10-6 | 8.8×10-6 | [ |
Colorimetric method | 99.9×10-6~998.7×10-6 | 1.0×10-6 | [ |
Liquid chromatography-ultraviolet method | 80×10-6~230×10-6 | 4×10-6 | [ |
Electrochemistry | 0.5×10-6~10×10-6 | 0.14×10-6 | [ |
Photoelectrochemical method CdS/TiO2 | 5.0×10-9~1.0×10-6 | 1.3×10-9 | [ |
Photoelectrochemical method CuO/Cu2O/C | 0.2×10-6~50×10-6 | 0.12×10-6 | [ |
Photoelectrochemical method ZnS | 2×10-6~50×10-6 | 0.67×10-6 | This work |
Table 1 Analysis performance of various methods on L-Cys
Method | Linear range/(mol·L-1) | Detection limit/(mol·L-1) | Ref. |
---|---|---|---|
Capillary electrophoresis | 1.0×10-6~5.0×10-4 | 8.76×10-7 | [ |
Fluorescence | 0~0.135×10-3 | 5.7×10-6 | [ |
Electrogenerated chemiluminescence | 10.0×10-6~100×10-6 | 8.8×10-6 | [ |
Colorimetric method | 99.9×10-6~998.7×10-6 | 1.0×10-6 | [ |
Liquid chromatography-ultraviolet method | 80×10-6~230×10-6 | 4×10-6 | [ |
Electrochemistry | 0.5×10-6~10×10-6 | 0.14×10-6 | [ |
Photoelectrochemical method CdS/TiO2 | 5.0×10-9~1.0×10-6 | 1.3×10-9 | [ |
Photoelectrochemical method CuO/Cu2O/C | 0.2×10-6~50×10-6 | 0.12×10-6 | [ |
Photoelectrochemical method ZnS | 2×10-6~50×10-6 | 0.67×10-6 | This work |
Sample | Added/(μmol·L-1) | Found/(μmol·L-1) | Recovery/% | RSD/%(n=3) |
---|---|---|---|---|
1 | 0 | 10.17 | - | 3.2 |
2 | 5 | 15.16 | 99.8 | 4.3 |
3 | 10 | 19.93 | 97.6 | 3.5 |
4 | 20 | 31.09 | 104.6 | 2.7 |
Table 2 Determination of L-Cys in human serum samples
Sample | Added/(μmol·L-1) | Found/(μmol·L-1) | Recovery/% | RSD/%(n=3) |
---|---|---|---|---|
1 | 0 | 10.17 | - | 3.2 |
2 | 5 | 15.16 | 99.8 | 4.3 |
3 | 10 | 19.93 | 97.6 | 3.5 |
4 | 20 | 31.09 | 104.6 | 2.7 |
1 | AGHAYAN M, MAHMOUDI A, SAZEGAR M R, et al. Tailoring cysteine detection in colorimetric techniques using Co/Fe-functionalized mesoporous silica nanoparticles[J]. J Mater Chem B, 2021, 9(17): 3716-3726. |
2 | HE J H, WU X, LONG Z, et al. Fast and sensitive fluorescent and visual sensing of cysteine using Hg-metalated PCN-222[J]. Microchem J, 2019, 145: 68-73. |
3 | TAJIK S, DOURANDISH Z, JAHANI P M, et al. Recent developments in voltammetric and amperometric sensors for cysteine detection[J]. RSC Adv, 2021, 11(10): 5411-5425. |
4 | 张召娟, 侯学振, 张凌素. 半胱氨酸分析检测方法的研究进展[J]. 广东化工, 2022, 49(16): 185-187. |
ZHANG Z J, HOU X Z, ZHANG L S. Research progress of cysteine detection technology[J]. Guangdong Chem Ind, 2022, 49(16): 185-187. | |
5 | 钱蕙, 曹蕊, 曹玉华. 毛细管电化学检测法测定光损伤头发中的氨基酸[J]. 苏州科技学院学报(自然科学版), 2008, 25(2): 40-43. |
QIAN H, CAO R, CAO Y H. Determination of cysteine and tyrosine in hair eradiated under UVB by capillary electrophoresis with electrochemical detection[J]. J Suzhou Univ Sci Technol (Nat Sci Ed), 2008, 25(2): 40-43. | |
6 | WENG Q F, JIN W R. Carbon fiber bundle-Au-Hg dual-electrode detection for capillary electrophoresis[J]. J Chromatogr A, 2002, 971(1/2): 217-223. |
7 | XU Z Y, QIN T Y, ZHOU X F, et al. Fluorescent probes with multiple channels for simultaneous detection of Cys, Hcy, GSH, and H2S[J]. TrAC Trends Anal Chem, 2019, 121: 115672. |
8 | HUANG Y, SHEN Y J, CHEN T T, et al. Specific detection and determination of cysteine by a luminescent samarium macrocycle-based fluorescent probe platform[J]. New J Chem, 2021, 45(5): 2366-2369. |
9 | WANG C, LAN Y X, YUAN F, et al. Chemiluminescent determination of L-cysteine with the lucigenin-carbon dot system[J]. Microchim Acta, 2019, 187(1): 50. |
10 | LIU C Y, MIAO Y Q, ZHANG X J, et al. Colorimetric determination of cysteine by a paper-based assay system using aspartic acid modified gold nanoparticles[J]. Microchim Acta, 2020, 187(6): 362. |
11 | AMARNATH K, AMARNATH V, AMARNATH K, et al. A specific HPLC-UV method for the determination of cysteine and related aminothiols in biological samples[J]. Talanta, 2003, 60(6): 1229-1238. |
12 | RASHEED P A, PANDEY R P, JABBAR K A, et al. Sensitive electrochemical detection of L-cysteine based on a highly stable Pd@Ti3C2Tx (MXene) nanocomposite modified glassy carbon electrode[J]. Anal Methods, 2019, 11(30): 3851-3856. |
13 | KHAMCHAROEN W, HENRY C S, SIANGPROH W. A novel L-cysteine sensor using in situ electropolymerization of L-cysteine: potential to simple and selective detection[J]. Talanta, 2022, 237: 122983. |
14 | LOMONT J P, SMITH J P. In situ Raman spectroscopy for real time detection of cysteine[J]. Spectrochim Acta Part A, Mol Biomol Spectrosc, 2022, 274: 121068. |
15 | XIAO C H, CHEN J H, LIU B, et al. Sensitive and selective electrochemical sensing of L-cysteine based on a caterpillar-like manganese dioxide-carbon nanocomposite[J]. Phys Chem Chem Phys, 2011, 13(4): 1568-1574. |
16 | ZHAO W W, XU J J, CHEN H Y. Photoelectrochemical bioanalysis: the state of the art[J]. Chem Soc Rev, 2015, 44(3): 729-741. |
17 | 王琼, 张伊, 唐浩, 等. 量子点在光电化学传感器中的研究进展[J]. 材料导报, 2022, 36(18): 20-27. |
WANG Q, ZHANG Y, TANG H, et al. Recent progress of quantum dots in photoelectrochemical sensors[J]. Mater Rep, 2022, 36(18): 20-27. | |
18 | ZHAO W W, XU J J, CHEN H Y. Photoelectrochemical detection of metal ions[J]. Analyst, 2016, 141(14): 4262-4271. |
19 | AI L C, WANG Y, ZHOU Y L, et al. Photoelectrochemical biosensor for N6-methyladenosine detection based on enhanced photoactivity of TiO2-X and MoS2 nanocomposite[J]. J Electroanal Chem, 2021, 895: 115444. |
20 | LI Y R, LIU G, JI D Z, et al. Smartphone-based label-free photoelectrochemical sensing of cysteine with cadmium ion chelation[J]. Analyst, 2022, 147(7): 1403-1409. |
21 | XIAO H J, LIAO X J, WANG H, et al. In situ formation of Bi2MoO6-Bi2S3 heterostructure: a proof-of-concept study for photoelectrochemical bioassay of L-cysteine[J]. Front Chem, 2022, 10: 845617. |
22 | ZHANG Y J, YU J R, HUANG W J, et al. Detection of L-cysteine in urine samples based on CdS/TiO2-modified extended-gate field-effect transistor photoelectrochemical sensor[J]. Microchim Acta, 2023, 190(7): 280. |
23 | CHEN J D, LI H Y, SHAO D, et al. A photoelectrochemical sensor based on copper-based metal organic framework derivatives for the homogeneous detection of L-cysteine[J]. Microchem J, 2024, 197: 109768. |
24 | HUANG L Z, LI J D, WANG Y L, et al. A light-driven enzyme-free photoelectrochemical sensor based on HKUST-1 derived Cu2O/Cu@microporous carbon with g-C3N4 p-n heterojunction for ultra-sensitive detection of L-cysteine[J]. Carbon, 2023, 215: 118466. |
25 | YANG H, ZHAO X, WANG H, et al. Sensitive photoelectrochemical immunoassay of Staphylococcus aureus based on one-pot electrodeposited ZnS/CdS heterojunction nanoparticles[J]. Analyst, 2020, 145: 165. |
26 | 余秀萍. 电化学沉积法制备Ⅱ-Ⅵ族金属硫化物纳米粒子及性能研究[D]. 苏州: 苏州大学, 2010. |
YU X P. Preparation of the Ⅱ-Ⅵ metallic sulfide nanoparticles by electrochemical method and their properties[D]. Suzhou: Suzhou University, 2010. | |
27 | 陈结霞, 张凯凯, 张宾, 等. 电化学沉积ZnS@CdS构建光电化学传感器测定谷胱甘肽[J]. 分析试验室, 2022, 41(5): 523-528. |
CHEN J X, ZHANG K K, ZHANG B, et al. A photoelectrochemical sensor for determination of glutathione constructed by electrochemical deposition of ZnS@CdS[J]. Chin J Anal Lab, 2022, 41(5): 523-528. | |
28 | WANG C, ZHANG B, CAO J, et al. Organic-inorganic hybrid flower-shaped microspheres appliedin photoelectrochemical sensing[J]. ACS Appl Mater Interfaces, 2022, 14(20): 23743-23755. |
29 | LI Y, ZHANG N, ZHAO W W, et al. Polymer dots for photoelectrochemical bioanalysis[J]. Anal Chem, 2017, 89(9): 4945-4950. |
30 | SABIR N, KHAN N, VOLKNER J, et al. Photo-electrochemical bioanalysis of guanosine monophosphate using coupled enzymatic reactions at a CdS/ZnS quantum dot electrode[J]. Small, 2015, 11(43): 5844-5850. |
31 | SHAIDAROVA L G, ZIGANSHINA S A, BUDNIKOV G K. Electrocatalytic oxidation of cysteine and cystine at a carbon-paste electrode modified with ruthenium(Ⅳ) oxide[J]. J Anal Chem, 2003, 58(6): 577-582. |
32 | PIYUSH K S, VELLACHAMY G, DHARMENDRA K Y, et al. Dual electrocatalytic behavior of oxovanadium (Ⅳ) salen immobilized carbon materials towards cysteine oxidation and cystine reduction: graphene versus single walled carbon nanotubes[J]. Chem Select, 2016, 1: 6726-6734. |
33 | 刘汝涛, 宗万松, 孙凤. 一种利用电化学技术快速鉴别半胱氨酸和胱氨酸的方法: 中国, 200910019947.6[P]. 2009-03-20. |
LIU R T, ZONG W S, SUN F. The invention relates to a method for rapid identification of cysteine and cystine by electrochemical technique: CN, 200910019947.6[P]. 2009-03-20. | |
34 | JACOBSEN D W, GATAUTIS V J, GREEN R, et al. Rapid HPLC determination of total homocysteine and other thiols in serum and plasma: sex differences and correlation with cobalamin and folate concentrations in healthy subjects[J]. Clin Chem, 1994, 40(6): 873-881. |
35 | HUANG Z, WU C Y, LI Y Q, et al. A fluorescent probe for the specific detection of cysteine in human serum samples[J]. Anal Methods, 2019, 11(26): 3280-3285. |
[1] | ZHAO Xinmei1, QIU Fubao2, WANG Haishui2*. Influence of Mn2+ on the Morphology Control of ZnS Nanoparticles [J]. Chinese Journal of Applied Chemistry, 2012, 29(02): 191-195. |
[2] | 张雨琴;张友玉;叶敏;谭平;赵梦娇;姚守拙. 光度法研究L-半胱氨酸修饰的ZnS纳米粒子与牛血红蛋白的作用 [J]. Chinese Journal of Applied Chemistry, 2008, 25(9): 1011-1016. |
[3] | 马娟a;张俊松a;周耀明a;陆天虹a;b;李邨a. 固相反应法合成的巯基乙酸钠修饰zns的光催化性能 [J]. Chinese Journal of Applied Chemistry, 2006, 23(12): 1368-1372. |
[4] | 李焕勇a;b;胡荣祖b;介万奇a. ZnSe晶体气相生长输运剂Zn(NH4)3Cl5的热分解行为及动力学 [J]. Chinese Journal of Applied Chemistry, 2003, 20(4): 312-317. |
[5] | 李文戈;朱琴玉;戴洁;蒋正静;卞国庆. ZnS与1,3-丙二胺高聚配合物的制备及光催化活性 [J]. Chinese Journal of Applied Chemistry, 2002, 19(10): 928-931. |
[6] | Su Yi, Xie Yi, Chen Qianwang, Qian Yitai. Hydrothermal Preparation and Characterization of Nanocrystalline ZnS and CdS [J]. Chinese Journal of Applied Chemistry, 1996, 0(5): 56-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||