
Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (12): 1751-1759.DOI: 10.19894/j.issn.1000-0518.240135
• Full Papers • Previous Articles Next Articles
Yue-Hua TAI, Wen-Cong SUN, Lin-Kui HE, Li ZHOU, Shu-Miao LI, Wen-Xue TIAN, Chun-Xiang LI()
Received:
2024-04-24
Accepted:
2024-10-21
Published:
2024-12-01
Online:
2025-01-02
Contact:
Chun-Xiang LI
About author:
lichx@hit.edu.cnSupported by:
CLC Number:
Yue-Hua TAI, Wen-Cong SUN, Lin-Kui HE, Li ZHOU, Shu-Miao LI, Wen-Xue TIAN, Chun-Xiang LI. Electrocatalytic Reduction of CO2 to Widely Proportionally Syngas Enabled by Cu x In y Alloy Synergistic Polyoxometalates[J]. Chinese Journal of Applied Chemistry, 2024, 41(12): 1751-1759.
Catalysts | 106 Cu | 106 In | Nominal (n(Cu)∶n(In)) | x(Cu)/% | x(In)/% | Actual (n(Cu)∶n(In)) |
---|---|---|---|---|---|---|
Cu1In3 | 9.37 | 46.12 | 0.33 | 26.85 | 73.15 | 0.36 |
Cu2In3 | 14.44 | 34.06 | 0.67 | 43.38 | 56.62 | 0.76 |
CuIn | 17.83 | 30.07 | 1.00 | 51.63 | 48.36 | 1.06 |
Table 1 ICP test results of Cu x In y
Catalysts | 106 Cu | 106 In | Nominal (n(Cu)∶n(In)) | x(Cu)/% | x(In)/% | Actual (n(Cu)∶n(In)) |
---|---|---|---|---|---|---|
Cu1In3 | 9.37 | 46.12 | 0.33 | 26.85 | 73.15 | 0.36 |
Cu2In3 | 14.44 | 34.06 | 0.67 | 43.38 | 56.62 | 0.76 |
CuIn | 17.83 | 30.07 | 1.00 | 51.63 | 48.36 | 1.06 |
Fig.4 FE (CO and H2) of Cu1In3 (A), Cu2In3 (B) and CuIn (C) in PV2MoW9 medium after electrolysis for 1 h at different voltage; (D) The current density for CO of Cu x In y in PV2MoW9 medium after electrolysis for 1 h
1 | ZHOU W, CHENG K, KANG J, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev, 2019, 48(12): 3193-3228. |
2 | SUN S, SUN H, WILLIAMS P T, et al. Recent advances in integrated CO2 capture and utilization: a review[J]. Sustainable Energy Fuels, 2021, 5(18): 4546-4559. |
3 | ZHAO R, ZHU Z Y, OUYANG T, et al. Selective CO2-to-syngas conversion enabled by bimetallic gold/zinc sites in partially reductived gold/zinc oxide arrays[J]. Angew Chem Int Ed, 2023: e202313597. |
4 | ZHOU Q C, TANG X N, QIU S H, et al. Stable CuIn alloy for electrochemical CO2 reduction to CO with high-selectivity[J]. Mater Today Phys, 2023, 33: 101050-101059. |
5 | HE R, ZHANG A, DING Y L, et al. Achieving the widest range of syngas proportions at high current density over cadmium sulfoselenide nanorods in CO2 electroreduction[J]. Adv Mater, 2018, 30: 1705872-1705879. |
6 | DARAYEN J, CHAILAPAKUL O, PRASERTHDAM P, et al. Advances in the key metal-based catalysts for efficient electrochemical conversion of CO2[J]. ChemBioEng Rev, 2022, 9(5): 475-496. |
7 | CZAPLINSKA J, SOBCZAK I, ZIOLEK M. Bimetallic AgCu/SBA-15 system: the effect of metal loading and treatment of catalyst on surface properties[J]. J Phys Chem C, 2014, 118(24): 12796-12810. |
8 | JIA S, ZHU Q, WU H, et al. Efficient electrocatalytic reduction of carbon dioxide to ethylene on copper-antimony bimetallic alloy catalyst[J]. Chin J Catal, 2020, 41(7): 1091-1098. |
9 | CHANG F, WANG C, WU X, et al. Strained lattice gold-copper alloy nanoparticles for efficient carbon dioxide electroreduction[J]. Materials, 2022, 15(14): 5064-5071. |
10 | DU J, MA Y Y, TAN H, et al. Progress of electrochemical CO2 reduction reactions over polyoxometalate-based materials[J]. Chin J Catal, 2021, 42(6): 920-937. |
11 | WANG D, LIU L, JIANG J, et al. Polyoxometalate-based composite materials in electrochemistry: state-of-the-art progress and future outlook[J]. Nanoscale, 2020, 12(10): 5705-5718. |
12 | LANG Z L, MIAO J, LAN Y C, et al. Polyoxometalates as electron and proton reservoir assist electrochemical CO2 reduction[J]. APL Mater, 2020, 8(12): 120702-120713. |
13 | TAI Y H, SUN W C, YAO D, et al. Keggin-type P-W-Mo-V polyoxometalates in electrocatalyzed CO2 reduction using indium electrodes[J]. Polyoxometalates, 2024, 3(2): 9140051.. |
14 | 胡会利, 李宁, 蒋雄. 电化学测量[M]. 北京: 国防工业出版社, 2011. |
HU H L, LI N, JIANG X. Electrochemical measurement[M]. Beijing: National Defense Industry Press, 2011. | |
15 | SUN W C, ZHOU L, TIAN W X, et al. Selective CO2 to proportionally tunable syngas at lower onset potential enabled by bimetallic chalcogenides in polyoxometalate medium[J]. Appl Catal B: Environ, 2024, 356: 124206-124218. |
16 | LI C W, KANAN M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. J Am Chem Soc, 2012, 134(17): 7231-7234. |
17 | MA Y, WANG J, YU J, et al. Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction[J]. Matter, 2021, 4(3): 888-926. |
18 | SHAO J, WANG Y, GAO D, et al. Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide[J]. Chin J Catal, 2020, 41(9): 1393-1400. |
19 | RUI N, WANG Z, SUN K, et al. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Appl Catal B, 2017, 218: 488-497. |
20 | WHITE J L, BOCARSLY A B. Enhanced carbon dioxide reduction activity on indium-based nanoparticles[J]. J Electrochem Soc, 2016, 163(6): H410-H416. |
21 | GAO P, DANG S, LI S, et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal, 2018, 8(1): 571-578. |
22 | HOCH L B, WOOD T E, O'BRIEN P G, et al. The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light[J]. Adv Sci, 2014, 1(1): 1400013-1400023. |
23 | SUN W C, YAO D, TAI Y H, et al. Efficient electrocatalytic CO2 reduction to ethanol through the proton coupled electron transfer process of PVnMo(12- n)(n=1, 2, 3) over indium electrode[J]. J Colloid Interface Sci, 2023, 650: 121-131. |
24 | BAYDAROGLU F O, ÖZDEMIR E, GÜREK A G. Polypyrrole supported Co-W-B nanoparticles as an efficient catalyst for improved hydrogen generation from hydrolysis of sodium borohydride[J]. Int J Hydrogen Energy, 2022, 47(16): 9643-9652. |
25 | GAN J, LU X, WU J, et al. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes[J]. Sci Rep, 2013, 3(1): 1021-1027. |
26 | 余华. Keggin型多元杂多化合物的合成、表征及催化性能研究[D]. 兰州: 兰州理工大学, 2010. |
YU H. Synthesis, characterization and catalytic properties of Keggin-type heteropoly compounds[D]. Lanzhou: Lanzhou University of Technology, 2010. |
[1] | XU Kerui, ZHONG Zhiming, XU Huidong, WANG Xuan, ZHAO Min, WU Chuande. Highly Efficient Aerobic Oxidation of Arylalkanes with a Biomimetic Catalyst Platform [J]. Chinese Journal of Applied Chemistry, 2017, 34(9): 1079-1085. |
[2] | XIE Lefang, XING Rui, WANG Fang, WANG Li. Antibacterial Activities of Six Kinds of Polyoxometalates [J]. Chinese Journal of Applied Chemistry, 2017, 34(6): 700-704. |
[3] | WANG Bin, WANG Xiaohong, Li Jiuming, WANG Xiaohui, XIE Lijuan, Duan Limei, LIU Zongrui. Electrochromic Properties of Hybrid Mutilayer Film Based on Pressler Type Polyoxometalate P5W30, Positive Polyelectrolyte and Graphene Oxide [J]. Chinese Journal of Applied Chemistry, 2017, 34(2): 233-241. |
[4] | LI Lili, CHEN Bingnian, DENG Yangyang, XIE Lefang, XING Rui, WANG Li. Inhibitory Effects of Dawson Type Polyoxometalates on Tyrosinase [J]. Chinese Journal of Applied Chemistry, 2017, 34(1): 83-89. |
[5] | LI Yuanyuan, YANG Chun. Photochromism of Ionic Liquid-like Polyoxometalates Functionalized by Sulfonic Acid [J]. Chinese Journal of Applied Chemistry, 2015, 32(7): 808-815. |
[6] | LI Yuanyuan, YANG Chun. Photochromism of Ionic Liquid-like Polyoxometalates Functionalized by Sulfonic Acid [J]. Chinese Journal of Applied Chemistry, 2015, 32(7): 0-0. |
[7] | CONG Yunling, YANG Chun. Catalytic Selective Synthesis of Mono (2-Methacryloyloxyethyl) Phosphate [J]. Chinese Journal of Applied Chemistry, 2015, 32(6): 658-665. |
[8] | LIU Zhongcheng, NI Xuepeng, NIU Ping. Functional Polyoxometalate-Based Composite Materials via Layer-by-Layer Self-Assembly [J]. Chinese Journal of Applied Chemistry, 2015, 32(3): 245-254. |
[9] | SU Hao, YANG Chun*. Selective Oxidation of Benzyl Alcohol Catalyzed by Polyoxometalates:A Green Recyclable Catalytic System with High Performance [J]. Chinese Journal of Applied Chemistry, 2014, 31(08): 958-964. |
[10] | LI Yuanyuan, YANG Chun*. Preparation of Ionic Liquid-like Polyoxometalates [PyPS]nH3-nPW12O40·xH2O and Their Photocatalytic Performances to Decoloration of Dyes in Aqueous Solution [J]. Chinese Journal of Applied Chemistry, 2013, 30(03): 310-315. |
[11] | Xu Guolin, Shi Keying, Shang Yongchen, Fan Yemei, Xu Hengyong. Reactivation of Waste Ni/Al2O3Catalyst [J]. Chinese Journal of Applied Chemistry, 1995, 0(4): 114-115. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 63
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||