1 |
ZHOU W, CHENG K, KANG J, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev, 2019, 48(12): 3193-3228.
|
2 |
SUN S, SUN H, WILLIAMS P T, et al. Recent advances in integrated CO2 capture and utilization: a review[J]. Sustainable Energy Fuels, 2021, 5(18): 4546-4559.
|
3 |
ZHAO R, ZHU Z Y, OUYANG T, et al. Selective CO2-to-syngas conversion enabled by bimetallic gold/zinc sites in partially reductived gold/zinc oxide arrays[J]. Angew Chem Int Ed, 2023: e202313597.
|
4 |
ZHOU Q C, TANG X N, QIU S H, et al. Stable CuIn alloy for electrochemical CO2 reduction to CO with high-selectivity[J]. Mater Today Phys, 2023, 33: 101050-101059.
|
5 |
HE R, ZHANG A, DING Y L, et al. Achieving the widest range of syngas proportions at high current density over cadmium sulfoselenide nanorods in CO2 electroreduction[J]. Adv Mater, 2018, 30: 1705872-1705879.
|
6 |
DARAYEN J, CHAILAPAKUL O, PRASERTHDAM P, et al. Advances in the key metal-based catalysts for efficient electrochemical conversion of CO2[J]. ChemBioEng Rev, 2022, 9(5): 475-496.
|
7 |
CZAPLINSKA J, SOBCZAK I, ZIOLEK M. Bimetallic AgCu/SBA-15 system: the effect of metal loading and treatment of catalyst on surface properties[J]. J Phys Chem C, 2014, 118(24): 12796-12810.
|
8 |
JIA S, ZHU Q, WU H, et al. Efficient electrocatalytic reduction of carbon dioxide to ethylene on copper-antimony bimetallic alloy catalyst[J]. Chin J Catal, 2020, 41(7): 1091-1098.
|
9 |
CHANG F, WANG C, WU X, et al. Strained lattice gold-copper alloy nanoparticles for efficient carbon dioxide electroreduction[J]. Materials, 2022, 15(14): 5064-5071.
|
10 |
DU J, MA Y Y, TAN H, et al. Progress of electrochemical CO2 reduction reactions over polyoxometalate-based materials[J]. Chin J Catal, 2021, 42(6): 920-937.
|
11 |
WANG D, LIU L, JIANG J, et al. Polyoxometalate-based composite materials in electrochemistry: state-of-the-art progress and future outlook[J]. Nanoscale, 2020, 12(10): 5705-5718.
|
12 |
LANG Z L, MIAO J, LAN Y C, et al. Polyoxometalates as electron and proton reservoir assist electrochemical CO2 reduction[J]. APL Mater, 2020, 8(12): 120702-120713.
|
13 |
TAI Y H, SUN W C, YAO D, et al. Keggin-type P-W-Mo-V polyoxometalates in electrocatalyzed CO2 reduction using indium electrodes[J]. Polyoxometalates, 2024, 3(2): 9140051..
|
14 |
胡会利, 李宁, 蒋雄. 电化学测量[M]. 北京: 国防工业出版社, 2011.
|
|
HU H L, LI N, JIANG X. Electrochemical measurement[M]. Beijing: National Defense Industry Press, 2011.
|
15 |
SUN W C, ZHOU L, TIAN W X, et al. Selective CO2 to proportionally tunable syngas at lower onset potential enabled by bimetallic chalcogenides in polyoxometalate medium[J]. Appl Catal B: Environ, 2024, 356: 124206-124218.
|
16 |
LI C W, KANAN M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. J Am Chem Soc, 2012, 134(17): 7231-7234.
|
17 |
MA Y, WANG J, YU J, et al. Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction[J]. Matter, 2021, 4(3): 888-926.
|
18 |
SHAO J, WANG Y, GAO D, et al. Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide[J]. Chin J Catal, 2020, 41(9): 1393-1400.
|
19 |
RUI N, WANG Z, SUN K, et al. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Appl Catal B, 2017, 218: 488-497.
|
20 |
WHITE J L, BOCARSLY A B. Enhanced carbon dioxide reduction activity on indium-based nanoparticles[J]. J Electrochem Soc, 2016, 163(6): H410-H416.
|
21 |
GAO P, DANG S, LI S, et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal, 2018, 8(1): 571-578.
|
22 |
HOCH L B, WOOD T E, O'BRIEN P G, et al. The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light[J]. Adv Sci, 2014, 1(1): 1400013-1400023.
|
23 |
SUN W C, YAO D, TAI Y H, et al. Efficient electrocatalytic CO2 reduction to ethanol through the proton coupled electron transfer process of PVnMo(12- n)(n=1, 2, 3) over indium electrode[J]. J Colloid Interface Sci, 2023, 650: 121-131.
|
24 |
BAYDAROGLU F O, ÖZDEMIR E, GÜREK A G. Polypyrrole supported Co-W-B nanoparticles as an efficient catalyst for improved hydrogen generation from hydrolysis of sodium borohydride[J]. Int J Hydrogen Energy, 2022, 47(16): 9643-9652.
|
25 |
GAN J, LU X, WU J, et al. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes[J]. Sci Rep, 2013, 3(1): 1021-1027.
|
26 |
余华. Keggin型多元杂多化合物的合成、表征及催化性能研究[D]. 兰州: 兰州理工大学, 2010.
|
|
YU H. Synthesis, characterization and catalytic properties of Keggin-type heteropoly compounds[D]. Lanzhou: Lanzhou University of Technology, 2010.
|