[1] Gu C P,Cui Y W,Wang L Y,et al. Synthesis of the Porous NiO/SnO2 Microspheres and Microcubes and Their Enhanced Formaldehyde Gas Sensing Performance[J]. Sens Actuators B,2017,241:298-307. [2] Kim J Y,Choi N J,Park H J,et al. A Hollow Assembly and Its Three-dimensional Network Formation of Single-Crystalline Co3O4 Nanoparticles for Ultrasensitive Formaldehyde Gas Sensors[J]. J Phys Chem C,2014,118:25994-26002. [3] Hakim M,Broza Y Y,Barash O,et al. Volatile Organic Compounds of Lung Cancer and Possible Biochemical Pathways[J]. Chem Rev,2012,112:5949-5966. [4] Wang Z,Hou C,De Q,et al. One-Step Synthesis of Co-Doped In2O3 Nanorods for High Response of Formaldehyde Sensor at Low Temperature[J]. ACS Sens,2018,3:468-475. [5] Mirzaei A,Neri G. Microwave-assisted Synthesis of Metal Oxide Nanostructures for Gas Sensing Application:A Review[J]. Sens Actuators B,2016,237:749-775. [6] SUN Xiangwei. Modification of Tungsten Oxide Semiconductor Photocatalyst and Its Photoelectrocatalytic[D]. Shandong:Shandong University,2019(in Chinese). 孙向威. 氧化钨半导体光催化剂的改性及其光电催化性能研究[D]. 山东:山东大学,2019. [7] NIU Fengxing,CHEN Yu,ZHANG Jiahao,et al. Preparation of Tungsten Trioxide/Zinc Oxide and Its Photocatalytic Degradation of Dye Wastewater[J]. Spec Petrochem,2019,36(2):22-26(in Chinese). 牛凤兴,陈钰,张嘉豪,等. WO3/ZnO的制备及其光催化降解染料废水研究[J]. 精细石油化工,2019,36(2):22-26. [8] HE Ke,LIU Shantang. Acetone Sensing Properties of SnO2-WO3 Metal Oxide Composites[J]. J Wuhan Inst Technol,2019,41(4):0311-05(in Chinese). 何珂,刘善堂. SnO2-WO3复合金属氧化物对丙酮的气敏性能[J]. 武汉工程大学学报,2019,41(4):0311-05. [9] GULIMEIRE Sireyi,ZHANG Yucai. Synthesis and Gas-Sensing Properties of Nano Tungsten Trioxide[J]. Chem Ind Times,2017,31(12):6-7(in Chinese). 古丽美热·斯热依,张玉才. 纳米三氧化钨的合成及气敏性能研究[J]. 化工时刊,2017,31(12):6-7. [10] LIU Dianxin,TIAN Zhiming,LIN Fan,et al. Preparation of Fe Doped WO3 Catalyst and Its Catalytic Activity for Degradation of Dyes[J]. Ind Catal,2019,27(3):38-42(in Chinese). 刘殿新,田志茗,林帆,等. Fe掺杂WO3催化剂制备及催化降解染料性能[J]. 工业催化,2019,27(3):38-42. [11] GAO Zhanzhong. First Studies of WO3 as Anode Material for Lithium Ion Bateeries[D]. Sichuan:University of Electronic Science and Technology of China,2017:63-66(in Chinese). 高占忠. 锂离子电池负极材料WO3的第一性原理研究[D]. 四川:电子科技大学,2017:63-66. [12] YU Haoxiong. Research on H2S-Sensing Properties and Mechanism of Nanocrystalline WO3 films[D]. Hubei:Huazhong University of Science & Technology,2017:12-15(in Chinese). 于号雄. 纳米WO3薄膜对H2S气体的敏感特性与机理研究[D]. 湖北:华中科技大学,2017:12-15. [13] CHEN Jian,XING Xiaxia,FENG Dongliang. Preparation of Pt/WO3 by Microwave-Assisted for Detection of Biomarker of Acetone[J]. J Funct Mater Devices,2019,25(1):1-6(in Chinese). 陈建,邢霞霞,冯东亮. 微波辅助制备Pt/WO3用于生物标志物丙酮的检测[J]. 功能材料与器件学报,2019,25(1):1-6. [14] HU Ming,QIN Yue,ZHAO Boshuo,et al. Study on Fabrication and NO2 Sensing Properties of Porous Silicon Modified with WO3 Nanowires[J]. Chinese J Sens Actuators,2019,32(2):167-171(in Chinese). 胡明,秦岳,赵博硕,等. 氧化钨纳米线修饰多孔硅结构的制备及NO2气敏性能研究[J]. 传感技术学报,2019,32(2):167-171. [15] ZENG Yan,HUA Zhongqiu,TIAN Xuemin,et al. Gas Sensing Properties of WO3 Nanoflakes Loaded with Ru for NH3 Detection[J]. J Chinese Ceram Soc,2018,46(1):70-77(in Chinese)。 曾艳,花中秋,田学民,等. Ru负载WO3纳米颗粒对NH3的气敏特性[J]. 硅酸盐学报,2018,46(1):70-77. [16] Yang H M,Tao Q F,Zhang X C. Solid-state Synthesis and Electrochemical Property of SnO2/NiO Nanomaterials[J]. J Alloys Compd,2008,459:98-102. [17] Song K,Meng X Q,Zhang J L,et al. A Simple Grinding-Calcination Approach to Prepare the Co3O4-In2O3 Heterojunction Structure with High-Performance Gas-Sensing Property Toward Ethanol[J]. RSC Adv,2016,6:105262-105269. [18] Korotcenkov G,Cho B K. Engineering Approaches for the Improvement of Conductometric Gas Sensor Parameters Part 1.Improvement of Sensor Sensitivity and Selectivity(Short Survey)[J]. Sens Actuators B,2013,188:709-728. [19] Mirzaei A,Leonardi S G,Neri G. Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors:A Review[J]. Ceram Int,2016,42:15119-15141. [20] Lin Y,Wei W,Li Y J,et al. Preparation of Pd Nanoparticle-Decorated Hollow SnO2 Nanofibers and Their Enhanced Formaldehyde Sensing Properties[J]. J Alloys Compd,2015,651:690-698. [21] Ju D,Xu H,Xu Q,et al. High Triethylamine-Sensing Properties of NiO/SnO2 Hollow Sphere P-N Heterojunction Sensors[J]. Sens Actuators B,2015,215:39-44. [22] Dong C J,Xu L,Hang B Q,et al. Nonaqueous Synthesis of Ag-Functionalized In2O3/ZnO Nanocomposites for Highly Sensitive Formaldehyde Sensor[J]. Sens Actuators B,2016,224:193-200. [23] Yamazoe N,Shimanoe K,Sawada C. Contribution of Electron Tunneling Transport in Semiconductor Gas Sensor[J]. Thin Solid Films,2007,515:8302-8309. [24] Zhu K M,Ma S Y,Pei S T,et al. Preparation Characterization and Formaldehyde Gas Sensing Properties of Walnut-Shaped BiFeO3 Microspheres[J]. Mater Lett,2019,246:107-110. [25] Yu H M,Li J Z,Li Z Y,et al. Enhanced Formaldehyde Sensing Performance Based on Ag@WO3 2D Nanocomposite[J]. Powder Technol,2019,343:1-10. [26] Upadhyay S B,Mishra R K,Sahay P P. Cr-Doped WO3 Nanosheets:Structural, Optical and Formaldehyde Sensing Properties[J]. Ceram Int,2016,42(14):15301-15310. |