[1] | XU Ruren,PANG Wenqin,HUO Qisheng,et alMolecular Sieves and Porous Materials Chemistry[M]. Beijing:Science Press,2015(in Chinese). 徐如人,庞文琴,霍启升,等. 分子筛与多孔材料化学[M]. 北京:科学出版社,2015. | [2] | WU Zhijie. Principle of Energy Conversion Catalysis[M]. China University of Petroleum Press,2018(in Chinese). 吴志杰. 能源转化催化原理[M]. 中国石油大学出版社,2018. | [3] | XIANG Shouhe,WAGNG Jingzhong,GAO Feng,et al. Study on L Acid of Hβ Zeolite[J]. Chinese J Catal,1991,12(5):406-408.(in Chinese). 项寿鹤,王敬中,高峰,等. Hβ沸石上L酸的研究[J]. 催化学报,1991,12(5):406-408. | [4] | TANG Yi,HUA Weiming,GAO Zi.Framework Structure and Acid Strength of Zeolite[J]. Acta Phys-Chim Sin,1994,10(12):1116-1120(in Chinese). 唐颐,华伟明,高滋. 沸石的骨架结构和酸强度[J]. 物理化学学报,1994,10(12):1116-1120. | [5] | Wu Y,Emdadi L,Qin D,et al. Quantification of External Surface and Pore Mouth Acid Sites in Unit-Cell Thick Pillared MFI and Pillared MWW Zeolites[J]. Micropor Mesopor Mater,2017,241:43-51. | [6] | Lad J B,Makkawi Y T.Adsorption of Dimethyl Ether(DME) on Zeolite Molecular Sieves[J]. Chem Eng J,2014,256:335-346. | [7] | Ordomsky V V,Murzin V Y,Monakhova Y V,et al. Nature, Strength and Accessibility of Acid Sites in Micro/Mesoporous Catalysts Obtained by Recrystallization of Zeolite BEA[J]. Micropor Mesopor Mater,2007,105(1/2):101-110. | [8] | Corma A,Fornes V,Forni L,et al. 2,6-Di-Tert-Butyl-Pyridine as a Probe Molecule to Measure External Acidity of Zeolites[J]. J Catal,1998,179(2):451-458. | [9] | Emdadi L,Oh S C,Wu Y.The Role of External Acidity of Meso-/Microporous Zeolites in Determining Selectivity for Acid-Catalyzed Reactions of Benzyl Alcohol[J]. J Catal,2016,335:165-174. | [10] | Hu B,Gay I D.Probing Surface Acidity by 31P Nuclear Magnetic Resonance Spectroscopy of Arylphosphines[J]. Langmuir,1999,15(2):477-481. | [11] | Emdadi L,Wu Y,Zhu G,et al. Dual Template Synthesis of Meso-and Microporous MFI Zeolite Nanosheet Assemblies with Tailored Activity in Catalytic Reactions[J]. Chem Mater,2012,26(3):1345-1355. | [12] | Liu D,Zhang X,Bhan A,et al. Activity and Selectivity Differences of External Br nsted Acid Sites of Single-Unit-Cell Thick and Conventional MFI and MWW Zeolites[J]. Micropor Mesopor Mater,2014,200:287-290. | [13] | Chal R,Gerardin C,Bulut M,et al. Overview and Industrial Assessment of Synthesis Strategies Towards Zeolites with Mesopores[J]. ChemCatChem,2011,3(1):67-81. | [14] | Wu Y,Emdadi L,Wang Z,et al. Textural and Catalytic Properties of Mo Loaded Hierarchical Meso-Microporous Lamellar MFI and MWW Zeolites for Direct Methane Conversion[J]. Appl Catal A,2014,470:344-354. | [15] | Wu Y,Emdadi L,Oh S C,et al. Spatial Distribution and Catalytic Performance of Metal-Acid Sites in Mo/MFI Catalysts with Tunable Meso-Microporous Lamellar Zeolite Structures[J]. J Catal,2015,323:100-111. | [16] | Wu Y,Emdadi L,Schulman E,et al. Overgrowth of Lamellar Silicalite-1 on MFI and BEA Zeolites and Its Consequences on Non-oxidative Methane Aromatization Reaction[J]. Micropor Mesopor Mater,2017,263:1-10. | [17] | Wu Z J,Zhao K Q,Zhang Y,et al. Synthesis and Consequence of Aggregated Nanosized ZSM-5 Zeolite Crystals for Methanol to Propylene Reaction[J]. Ind Eng Chem Res,2019,58(25):10737-10749. | [18] | LIU Wenhuan,GUO Peng,SU Ji,et al. Acid Characterization and Acid Catalytic Performance of Titanium Silicate Molecular Sieve TS-1[J]. Chinese J Catal,2009,30(6):482-484(in Chinese). 刘文欢,郭鹏,苏际,等. 钛硅分子筛TS-1的酸性表征及酸催化性能[J]. 催化学报,2009,30(6):482-484. | [19] | Niwa M,Katada N.New Method for the Temperature-Programmed Desorption(TPD) of Ammonia Experiment for Characterization of Zeolite Acidity:A Review[J]. Chem Rec,2014,45(6):432-455. | [20] | Bagnasco G.Improving the Selectivity of NH3-TPD Measurements[J]. J Catal,1996,159(1):249-252. | [21] | Hu S,Shang J,Zhang Q,et al Selective Formation of Propylene from Methanol over High-Silica Nanosheets of MFI Zeolite[J]. Appl Catal A,2012,445/446:215-220. | [22] | Li W,Ma T,Zhang Y F,et al. Facile Control of Inter-crystalline Porosity in the Synthesis of Size-Controlled Mesoporous MFI Zeolites via in-Situ Converting Silica Gel into Zeolite Nanocrystals for Catalytic Cracking[J]. CrystEngComm,2015,17:5680-5689. | [23] | HU Si,ZHANG Qing,YIN Qi,et al. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Phys-Chim Sin,2015,31(7):1374-1382(in Chinese). 胡思,张卿,尹琪,等. 甲醇制丙烯反应性能氢氧化钠-氟硅酸铵改性HZSM-5催化甲醇制丙烯[J]. 物理化学学报,2015,31(7):1374-1382. | [24] | Zhang J L,Cao P,Yan H Y,et al. Synthesis of Hierarchical Zeolite Beta with Low Organic Template Content via the Steam-Assisted Conversion Method[J]. Chem Eng J,2016,291:82-93. | [25] | Wu Z J,Zhao K Q,Ge S H,et al. Selective Conversion of Glycerol into Propylene:Single-Step versus Tandem Process[J]. ACS Sustainable Chem Eng,2016,4(8):4192-4207. | [26] | Emdadi L,Tran D T,Wu Y,et al. BEA Nanosponge/Ultra-thin Lamellar MFI Prepared in One-Step:Integration of 3D and 2D Zeolites into a Composite for Efficient Alkylation Reactions[J]. Appl Catal A,2017,530:56-65. | [27] | REN Fenfen. Pore Structure, Acidity and Benzylation of Naphthalene over Mesopores Beta Zeolite[D]. Taiyuan:Taiyuan University of Technology,2017(in Chinese). 任奋奋. 中孔Beta沸石的孔结构、酸性及其萘的苄基化催化性能研究[D]. 太原:太原理工大学,2017. | [28] | XUE Bing,WU Hao,Wen Linzhi,et al. Alkylation of Toluene to p-Xylene Catalyzed by Boric Acid Modified MCM-22 Zeolite[J]. Chem Ind Eng Prog,2017,36(6):2177-2182(in Chinese). 薛冰,吴浩,文琳智,等. 硼酸改性MCM-22分子筛催化甲苯烷基化合成对二甲苯[J]. 化工进展,2017,36(6):2177-2182. | [29] | Kester P M,Miller J T,Gounder R.Ammonia Titration Methods to Quantify Brønsted Acid Sites in Zeolites Substituted with Aluminum and Boron Heteroatoms[J]. Ind Eng Chem Res,2018,57(19):1081-1096. | [30] | Yuta N,Takumi K,Ken-Ichi S,et al. Micropore Diffusivities of NO and NH3 in Cu-ZSM-5 and Their Effect on NH3-SCR[J]. Catal Today,2019,332:64-68. | [31] | Luo J Y,Gao F,Kamasamudram K,et al. New Insights into Cu/SSZ-13 SCR Catalyst Acidity.Part I:Nature of Acidic Sites Probed by NH3 Titration[J]. J Catal,2017,348:291-299. | [32] | Lin C,Janssens T V W,Skoglundh M,et al. Interpretation of NH3-TPD Profiles from Cu-CHA Using First-Principles Calculations[J]. Top Catal,2019,62:93-99. | [33] | Wakabayashi F,Kondo J,Wada A,et al. FT-IR Studies of the Interaction Between Zeolitic Hydroxyl Groups and Small Molecules.1.Adsorption of Nitrogen on H-Mordenite at Low Temperature[J]. J Phys Chem,1993,94(47):10761-10768. | [34] | Katada N.Analysis and Interpretation of Acidic Nature of Aluminosilicates[J]. Mol Catal,2018,458:116-126. | [35] | HU Si,ZHANG Qing,GONG Yanjun,et al. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys-Chim Sin,2016,32(7):1785-1794(in Chinese). 胡思,张卿,巩雁军,等. HZSM-5分子筛在甲醇制丙烯反应中的失活与再生[J]. 物理化学学报,2016,32(7):1785-1794. | [36] | Emeis C A.Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts[J]. J Catal,1993,141(2):347-354. | [37] | Wu Y,Zheng L,Emdadi L,et al. Tuning External Surface of Unit-Cell Thick Pillared MFI and MWW Zeolites by Atomic Layer Deposition and Its Consequences on Acid-Catalyzed Reactions[J]. J Catal,2016,337:177-187. | [38] | BI Yunfei,XIA Guofu,HUANG Weiguo,et al. Study on Catalysts for Hydroisomerization-Effect of Acidic Properties[J]. Acta Petrol Sin(Petrol Process Sect),2017,33(5):873-979(in Chinese). 毕云飞,夏国富,黄卫国,等. 加氢异构化催化剂的研究——酸性能的影响[J]. 石油学报(石油加工),2017,33(5):873-979. | [39] | Baertsch C D,Komala K T,Chua Y H,et al. Genesis of Brønsted Acid Sites During Dehydration of 2-Butanol on Tungsten Oxide Catalysts[J]. J Catal,2002,205(1):44-57. | [40] | Macht J,Baertsch C D,May-Lozano M,et al. Support Effects on Brønsted Acid Site Densities and Alcohol Dehydration Turnover Rates on Tungsten Oxide Domains[J]. J Catal,2004,227(2):479-491. | [41] | Liu H,Iglesia E.Effects of Support on Bifunctional Methanol Oxidation Pathways Catalyzed by Polyoxometallate Keggin Clusters[J]. J Catal,2003,223(1):161-169. | [42] | Santiesteban J G,Vartuli J C,Han S,et al. Influence of the Preparative Method on the Activity of Highly Acidic WOx/ZrO2 and the Relative Acid Activity Compared with Zeolites[J]. J Catal,1997,168(2):431-441. | [43] | Knö zinger H. Infrared Spectroscopy as a Probe of Surface Acidity[M]. Elementary Reaction Steps in Heterogeneous Catal. Springer Netherlands,1993,398:267-285. | [44] | GoraMarek K,Tarach K,Choi M. 2,6-Di-Tert-Butylpyridine Sorption Approach to Quantify the External Acidity in Hierarchical Zeolites[J]. J Phys Chem C,2014,118(23):12266-12274. | [45] | WANG Bin.The Acidity of Zeolites Tested by the Basic Probe Molecular with Adsorption Infrared Spectroscopy[C]. Beijing Institute of Chemical Technology Youth Scientific and Technological Papers Conference. Beijing,2008(in Chinese). 王斌. 碱性探针分子吸附红外光谱法研究分子筛的酸性[C]. 北京化工研究院青年科技论文报告会. 北京,2008. | [46] | Barzetti T,Selli E,Moscotti D,et al. Pyridine and Ammonia as Probes for FTIR Analysis of Solid Acid Catalysts[J]. J Chem Soc,Faraday Trans,1996,92(8):1401-1407. | [47] | Bhan A,Allian A D,Sunley G J,et al. Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls[J]. J Am Chem Soc,2007,129(16):4919-4924. | [48] | Bhan A,Iglesia E.A Link Between Reactivity and Local Structure in Acid Catalysis on Zeolites[J]. Acc Chem Res,2008,41(4):559-567. | [49] | Gabrienko A A,Danilova I G,et al. Direct Measurement of Zeolite Bronsted Acidity by FTIR Spectroscopy: Solid-State 1H MAS NMR Approach for Reliable Determination of the Integrated Molar Absorption Coefficients[J]. J Phys Chem C,2018,122:25386-25395. | [50] | Huang J,Jiang Y,Marthala V R R,et al. Concentration and Acid Strength of Hydroxyl Groups in Zeolites La,Na-X and La,Na-Y with Different Lanthanum Exchange Degrees Studied by Solid-State NMR Spectroscopy[J]. Micropor Mesopor Mater,2007,104(1):129-136. | [51] | Yin F,Blumenfeld A L,Gruver V,et al. NH3 as a Probe Molecule for NMR and IR Study of Zeolite Catalyst Acidity[J]. J Phys Chem B,1997,101(10):1824-1830. | [52] | Zhao R,Zhao Z,Li S,et al. Insights into the Correlation of Aluminum Distribution and Bronsted Acidity in H-Beta Zeolites from Solid-State NMR Spectroscopy and DFT Calculations[J]. J Phys Chem Lett,2017,8(10):2323-2327. | [53] | GAO Xiuzhi,ZHANG Yu,WANG Xiumei,et al. Solid State NMR Study on Acidic Central Structure and Acidity ofDealuminized HY Zeolite[J]. Acta Petrol Sin(Petrol Process Sect),2012,28(2):180-187(in Chinese). 高秀枝,张翊,王秀梅,等. 脱铝HY分子筛酸中心结构与酸性的固体NMR研究[J]. 石油学报(石油加工),2012,28(2):180-187. | [54] | Holland G P,Cherry B R,Alam T M.15N Solid-State NMR Characterization of Ammonia Adsorption Environments in 3A Zeolite Molecular Sieves[J]. J Phys Chem B,2004,108(42):16420-16426. | [55] | Holland G P,Alam T M.Location and Orientation of Adsorbed Molecules in Zeolites from Solid-State REAPDOR NMR[J]. Phys Chem Chem Phys,2005,7(8):1739-1742. | [56] | Chu Y Y,Yu Z W,Zheng A M,et al. Acidic Strengths of Bronsted and Lewis Acid Sites in Solid Acids Scaled by 31P NMR Chemical Shifts of Adsorbed Trimethylphosphine[J]. J Phys Chem C,2011,115(15):7660-7667. | [57] | Karra M D,Sutovich K J,Mueller K T.NMR Characterization of Bronsted Acid Sites in Faujasitic Zeolites with Use of Perdeuterated Trimethylphosphine Oxide[J]. J Am Chem Soc,2002,124(6):902-903. | [58] | Zhao Q,Chen W H,Huang S J,et al. Discernment and Quantification of Internal and External Acid Sites on Zeolites[J]. J Phys Chem B,2002,106(17):4462-4469. | [59] | Zheng A,Zhang H,Lu X,et al. Theoretical Predictions of 31P NMR Chemical Shift Threshold of Trimethylphosphine Oxide Absorbed on Solid Acid Catalysts[J]. J Phys Chem B,2008,112(15):4496-4505. | [60] | YU Shanqing,TIAN Huiping.Acidity characterization of Rare-Earth-Exchanged Y Zeolite Using 31P MAS NMR[J]. Chinese J Catal,2014,35(8):1318-1328(in Chinese). 于善青,田辉平. 31P MAS NMR固体核磁共振研究稀土改性Y分子筛的酸性[J]. 催化学报,2014,35(8):1318-1328. |
|