应用化学 ›› 2025, Vol. 42 ›› Issue (11): 1510-1523.DOI: 10.19894/j.issn.1000-0518.250115

• 研究论文 • 上一篇    下一篇

基于表面增强拉曼光谱结合深度学习模型快速定量检测菠菜中的氯氰菊酯

吴秀秀1, 刘志敏1, 杨栋1, 毛顺1, 王焱鑫1, 郭德华2(), 徐斐1()   

  1. 1.上海理工大学健康科学与工程学院,上海食品快速检测工程技术研究中心,上海 200093
    2.上海海关动植物与食品检验检疫技术中心,上海 200135
  • 收稿日期:2025-03-15 接受日期:2025-06-16 出版日期:2025-11-01 发布日期:2025-12-05
  • 通讯作者: 郭德华,徐斐
  • 基金资助:
    上海市“人工智能促进科研范式改革赋能学科跃升计划”项目(Z-2025-312-023)

Rapid and Quantitative Detection of Cypermethrin in Spinach Based on Surface-Enhanced Raman Spectroscopy Combined with Deep Learning Model

Xiu-Xiu WU1, Zhi-Min LIU1, Dong YANG1, Shun MAO1, Yan-Xin WANG1, De-Hua GUO2(), Fei XU1()   

  1. 1.School of Health Science and Engineering,Shanghai Engineering Research Center of Food Rapid Detection,University of Shanghai for Science and Technology,Shanghai 200093,China
    2.Technical Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs,Shanghai 200135,China
  • Received:2025-03-15 Accepted:2025-06-16 Published:2025-11-01 Online:2025-12-05
  • Contact: De-Hua GUO,Fei XU
  • About author:xufei8135@126.com
    guodehua@customs.gov.cn
  • Supported by:
    Program of Shanghai Artificial Intelligence to Promote the Reform of Scientific Research Paradigm Enabling Discipline Leaping Plan(Z-2025-312-023)

摘要:

蔬菜和水果中的拟除虫菊酯类农药的残留会对人体健康造成危害。 建立了表面增强拉曼光谱(SERS)结合深度学习模型快速定量检测菠菜中氯氰菊酯农药的方法。 首先,Ag/ZnO纳米花作为SERS基底。 然后,对采集到的SERS光谱数据进行增强,并分别对增强后的光谱数据进行Savitzky-Golay(S-G)和均值中心化(MC)预处理,后将2种预处理算法联用。 分别对原始增强光谱和3种方法预处理后的增强光谱建立了反向传播(BP)神经网络深度学习模型,用于实际样品菠菜中氯氰菊酯的预测。 结果表明,基于原始增强光谱的BP神经网络深度学习模型具有优异的预测性能。 其测试集的复相关系数RP=0.9902,均方根误差RMSEP=0.102,检出限为20 μg/L,双尾配对t检验表明,标准方法液相色谱-质谱联用(LC-MS)与该方法之间的检测结果无显著差异。 将SERS光谱输入到训练好的模型后,5~10 min即可完成检测。 建立了一种基于Ag/ZnO纳米花的SERS方法与BP神经网络模型相结合,用于菠菜中氯氰菊酯农药残留的快速定量检测的方法。

关键词: 氯氰菊酯, 菠菜, 表面增强拉曼光谱, 深度学习, 反向传播神经网络

Abstract:

The residues of pyrethroid pesticides in vegetables and fruits can cause harm to human health. In this work, a surface-enhanced Raman spectroscopy (SERS) coupled with back propagation (BP) neural network deep learning model was established for rapid detection of cypermethrin (CPM) in spinach. Concretely, Ag/ZnO were applied as SERS substrates. Then, the collected SERS spectra were expanded, and the expanded spectral data were preprocessed by Savitzky-Golay (S-G), mean centralization (MC) and the combination of the two methods. Furthermore, BP neural network models were established for the prediction of CPM in actual samples for the original enhanced spectrum and the pretreated spectrum, respectively, and three traditional machine learning models were established for comparison. It was found that the BP model has the best prediction performance based on the original expanded spectrum, with the prediction set RP=0.9902, the root mean square error RMSEP=0.102 and the limit of detection 20 μg/L. The two-tailed paired t-tests showed that there was no significant difference between the standard method LC-MS and this method. The detection can be finished in 5~10 min. This work established an Ag/ZnO-based SERS method coupled with BP neural network model for the rapid and quantitative detection of CPM residues in spinach.

Key words: Cypermethrin, Spinach, Surface-enhanced Raman spectroscopy, Deep learning, Back propagation neural network

中图分类号: