1 |
WANG J, GAO D, LEE P S. Artificial muscles: recent progress in artificial muscles for interactive soft robotics[J]. Adv Mater, 2021, 33(19): 2170144.
|
2 |
SU Y, ZHANG Y, QIU C, et al. Silicon photonics: silicon photonic platform for passive waveguide devices: materials, fabrication, and applications[J]. Adv Mater Technol, 2020, 5(8): 2070046.
|
3 |
LIN Z, WU M, HE H, et al. Bioinks: 3D printing of mechanically stable calcium‐free alginate‐based scaffolds with tunable surface charge to enable cell adhesion and facile biofunctionalization[J]. Adv Funct Mater, 2019, 29(9): 1970053.
|
4 |
JEONG H, LI H B, DOMULEVICZ L, et al. Single-molecule junctions: an on-chip break junction system for combined single-molecule conductance and raman spectroscopies[J]. Adv Funct Mater, 2020, 30(28): 2070188.
|
5 |
WANG Z, SHIN J, PARK J, et al. Electrochemical sweat sensing: engineering materials for electrochemical sweat sensing[J]. Adv Funct Mater, 2021, 31(12): 2170083.
|
6 |
RODRIGUEZ R D, SHCHADENKO S, MURASTOV G, et al. Flexible electronics: ultra‐robust flexible electronics by laser‐driven polymer‐nanomaterials integration[J]. Adv Funct Mater, 2021, 31(17): 2008818.
|
7 |
ANDERSSON C, LAI Z, LIU J, et al. Comparison of isothermal mechanical fatigue properties of lead-free solder joints and bulk solders[J]. Mater Sci Eng: A, 2005, 394(1/2): 20-27.
|
8 |
JANG J W, SUK K L, PAIK K W, et al. Measurement and analysis for residual warpage of chip-on-flex (COF) and chip-in-flex (CIF) packagees[J]. IEEE Trans Compon, Packag, Manuf Technol, 2011, 2(5): 834-840.
|
9 |
YIN C Y, ALAM M O, CHAN Y C, et al. The effect of reflow process on the contact resistance and reliability of anisotropic conductive film interconnection for flip chip on flex applications[J]. Microelectron Reliab, 2003, 43(4): 625-633.
|
10 |
CHENG S, HUANG C M, PECHT M. A review of lead-free solders for electronics applications[J]. Microelectron Reliab, 2017, 75: 77-95.
|
11 |
SUH D, KIM D W, LIU P, et al. Effects of Ag content on fracture resistance of Sn-Ag-Cu lead-free solders under high-strain rate conditions[J]. Mater Sci Eng: A, 2007, 460: 595-603.
|
12 |
KOTADIA H R, HOWES P D, MANNAN S H. A review: on the development of low melting temperature Pb-free solders[J]. Microelectron Reliab, 2014, 54(6/7): 1253-1273.
|
13 |
NISHIKAWA H, MIKAMI S, MIYAKE K, et al. Effects of silver coating covered with copper filler on electrical resistivity of electrically conductive adhesives[J]. Mater Trans, 2010, 51(10): 1785-1789.
|
14 |
LEE H H, CHOU K S, SHIH Z W. Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives[J]. Int J Adhes Adhes, 2005, 25(5): 437-441.
|
15 |
CUI H W, KOWALCZYK A, LI D S, et al. High performance electrically conductive adhesives from functional epoxy, micron silver flakes, micron silver spheres and acidified single wall carbon nanotube for electronic package[J]. Int J Adhes Adhes, 2013, 44: 220-225.
|
16 |
WU Z, LI J, TIMMER D, et al. Study of processing variables on the electrical resistivity of conductive adhesives[J]. Int J Adhes Adhes, 2009, 29(5): 488-494.
|
17 |
WOJCIECHOWSKI D, VANFLETEREN J, REESE E, et al. Electro-conductive adhesives for high density package and flip-chip interconnections[J]. Microelectron Reliab, 2000, 40(7): 1215-1226.
|
18 |
SU Z, WANG H, YE X, et al. Anisotropic thermally conductive flexible polymer composites filled with hexagonal born nitride (h-BN) platelets and ammine carbon nanotubes (CNT-NH2): effects of the filler distribution and orientation[J]. Compos Part A-Appl, 2018, 109: 402-412.
|
19 |
HE L. Improve thermal conductivity of polymer composites via conductive network[J]. ES Mater Manuf, 2021, 13: 1-2.
|
20 |
AHMED T, BHOURI M, GROULX D, et al. Passive thermal management of tablet PCs using phase change materials: continuous operation[J]. Int J Therm Sci, 2018, 134: 101-115.
|
21 |
WU H, DRZAL L T. High thermally conductive graphite nanoplatelet/polyetherimide composite by precoating: effect of percolation and particle size[J]. Polym Compos, 2013, 34(12): 2148-2153.
|
22 |
WANG H, PENG Y, PENG H, et al. Fluidic phase-change materials with continuous latent heat from theoretically tunable ternary metals for efficient thermal management[J]. Proc Natl Acad Sci, 2022, 119(31): e2200223119.
|
23 |
JASMEE S, OMAR G, OTHAMAN S S C, et al. Interface thermal resistance and thermal conductivity of polymer composites at different types, shapes, and sizes of fillers: a review[J].Polym Compos, 2021, 42(6): 2629-2652.
|
24 |
ZHOU L Y, GAO Q, ZHAN J F, et al. Three-dimensional printed wearable sensors with liquid metals for detecting the pose of snakelike soft robots[J]. ACS Appl Mater Interfaces, 2018, 10(27): 23208-23217.
|
25 |
YUAN X, ZOU J, SUN L, et al. Soft tactile sensor and curvature sensor for caterpillar-like soft robot's adaptive motion[C]//Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence. 2019: 690-695.
|
26 |
BO G, YU H, REN L, et al. Gallium-indium-tin liquid metal nanodroplet-based anisotropic conductive adhesives for flexible integrated electronics[J]. ACS Appl Nano Mater, 2021, 4(1): 550-557.
|
27 |
MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nat Mater, 2010, 9(10): 859-864.
|
28 |
LIU J, JIANG T, DUAN F, et al. Electrophoresis deposition of flexible and transparent silver nanowire/graphene composite film and its electrochemical properties[J]. J Alloys Compd, 2018, 745: 370-377.
|
29 |
VERMA S, GOYAL M, KUMAR S, et al. Show more enhanced electrochemical performance of copper oxide nanobeads a potential electrode material for energy storage devices[J]. Chem Phys Lett, 2020, 749:137472.
|
30 |
WANG D, HAN C, MO F, et al. Energy density issues of flexible energy storage devices[J]. Energy Storage Mater, 2020, 28: 264-292.
|
31 |
SMITHYMAN J, LIANG R. Flexible supercapacitor yarns with coaxial carbon nanotube network electrodes[J]. Mater Sci Eng B Adv, 2014, 184: 34-43.
|
32 |
DINH T, DAU V, TRAN C D, et al. Polyacrylonitrile‐carbon nanotube‐polyacrylonitrile: a versatile robust platform for flexible multifunctional electronic devices in medical applications[J]. Macromol Mater Eng, 2019, 304(6): 1900014.
|
33 |
XU H, XIE Y, ZHU E, et al. Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films[J]. J Mater Chem A, 2020, 8(13): 6311-6318.
|
34 |
ZOU Z, ZHU C, LI Y, et al. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite[J]. Sci Adv, 2018, 4(2): eaaq0508.
|
35 |
DU X, NIU Z, LI R, et al. Highly adhesive, washable and stretchable on-skin electrodes based on polydopamine and silk fibroin for ambulatory electrocardiography sensing[J]. J Mater Chem C, 2020, 8(35): 12257-12264.
|
36 |
LI H, WANG K, CHENG S, et al. High performance liquid metal battery with environmentally friendly antimony-tin positive electrode[J]. ACS Appl Mater Interfaces, 2016, 8(20): 12830-12835.
|
37 |
FASSLER A, MAJIDI C. Liquid-phase metal inclusions for a conductive polymer composite[J]. Adv Mater, 2015, 27(11): 1928-1932.
|
38 |
NEWHOUSE J M, POIZEAU S, KIM H, et al. Thermodynamic properties of calcium-magnesium alloys determined by emf measurements[J]. Electrochim Acta, 2013, 91: 293-301.
|
39 |
ZHANG P, TIAN R, ZHANG X, et al. Electromagnetic interference shielding epoxy composites with satisfactory thermal conductivity and electrical insulation performance enabled by low-melting-point alloy layered structure[J]. Compos Part B-Eng, 2022, 232: 109611.
|
40 |
CHANG H, KIM S, KANG T H, et al. Wearable piezoresistive sensors with ultrawide pressure range and circuit compatibility based on conductive-island-bridging nanonetworks[J]. ACS Appl Mater Interface, 2019, 11(35): 32291-32300.
|
41 |
JIANG Y, RU X, CHE W, et al. Flexible, mechanically robust and self-extinguishing MXene/wood composite for efficient electromagnetic interference shielding[J]. Composites, Part B,2022, 229: 109460.
|
42 |
2021-2026年柔性电子产业链全景调研及投资战略分析报告[R]. 北京: 北京普华有策信息咨询有限公司, 2021: 16-27.
|
|
2021-2026 Flexible electronics industry chain panoramic survey and investment strategy analysis report[R]. Beijing: Beijing Puhua Youce Information Consulting Limited Company, 2021: 16-27.
|
43 |
LI X, SHENG M, GONG S, et al. Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices[J]. Chem Eng J, 2022, 430: 132928.
|
44 |
LIU H, XU Y, HAN D, et al. Leaf-structured carbon nanotubes/graphene aerogel and the composites with polydimethylsiloxane for electromagnetic interference shielding[J]. Mater Lett, 2022, 313: 131751.
|
45 |
WANASINGHE D, ASLANI F. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes[J]. Compos Part B-Eng, 2019, 176: 107207.
|
46 |
LI J, WANG A, QIN J, et al. Lightweight polymethacrylimide@copper/nickel composite foams for electromagnetic shielding and monopole antennas[J]. Compos Part A-Appl, 2021, 140: 106144.
|
47 |
LI Y, XUE B, YANG S, et al. Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding[J]. Chem Eng J, 2021, 410: 128356.
|
48 |
ZHOU B, SU M, YANG D, et al. Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance[J]. ACS Appl Mater Interfaces, 2020, 12(36): 40859-40869.
|