应用化学 ›› 2023, Vol. 40 ›› Issue (3): 449-459.DOI: 10.19894/j.issn.1000-0518.220296
收稿日期:
2022-09-02
接受日期:
2023-02-18
出版日期:
2023-03-01
发布日期:
2023-03-27
通讯作者:
高峰
基金资助:
Nan-Yu LIN, Feng GAO(), Jiang-Ying QU, Jing-Jing TU, Wei-Jun ZHONG, Yun-Hao ZANG
Received:
2022-09-02
Accepted:
2023-02-18
Published:
2023-03-01
Online:
2023-03-27
Contact:
Feng GAO
About author:
fenggao2003@163.comSupported by:
摘要:
以机械强度高、柔性好和耐热耐酸的高硅布(HSC)为基底,通过一步接枝法和自聚合法对其浸润性给予改性。采用3-氨丙基三乙氧基硅烷(APTES)作为“双面胶”接枝在其表面: 一面利用静电作用沉积纳米SiO2提供表面粗糙度,另一面聚合具有强亲水性的聚多巴胺(PDA),获得了超亲水/水下疏油高硅布(APTES/SiO2/PDA@HSC)。研究了不同尺寸(50、300和500 nm)的SiO2对油水分离性能的影响,发现随着SiO2尺寸增加,分离效率逐渐降低,其中APTES/50 nm SiO2/PDA@HSC的油水分离性能最好。它的水接触角为0(°),表现出明显的水下疏油性能,对汽油-水混合物分离效率为98%,滤液含油量低至37 mg/L,油水混合物通量为7184 L/(m2·h),10次循环分离效率仍能达到97.4%,对花生油和泵油也有明显的油水分离效果。
中图分类号:
林楠煜, 高峰, 曲江英, 涂晶晶, 钟伟军, 臧云浩. 超亲水/水下疏油高硅布的制备及其油水分离性能[J]. 应用化学, 2023, 40(3): 449-459.
Nan-Yu LIN, Feng GAO, Jiang-Ying QU, Jing-Jing TU, Wei-Jun ZHONG, Yun-Hao ZANG. Preparation of Super-hydrophilic/Underwater Oil-phobic High Silicon Cloth and Its Oil-water Separation Performance[J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 449-459.
图5 HSC(A)、APTES@HSC(B)、APTES/50 nm SiO2@HSC(C)和APTES/50 nm SiO2/PDA@HSC(D)的水接触角
Fig.5 Water contact angle images of HSC(A), APTES@HSC(B), APTES/50 nm SiO2@HSC(C) and APTES/50 nm SiO2/PDA@HSC(D)
图7 HSC(A、B)和APTES/50 nm SiO2/PDA@HSC(C、D)的汽油-水混合物分离过程
Fig.7 The separation process of the gasoline-water mixture on HSC(A, B) and APTES/50 nm SiO2/PDA@HSC(C, D)
图8 HSC、50 nm SiO2/PDA@HSC、APTES/50 nm SiO2@HSC、APTES/PDA@HSC和APTES/50 nm SiO2/PDA@HSC分离汽油-水混合物的滤液萃取后的(A)UV-Vis谱图、(B)滤液含油量和分离效率和(C)纯水和汽油-水通量
Fig.8 (A) UV-Vis scan of gasoline-water mixture separation filter after extraction; (B) Oil content of filter and separation efficiency; (C) Membrane flux of water and gasoline-water mixture of HSC, 50 nm SiO2/PDA@HSC, APTES/50 nm SiO2@HSC, APTES/PDA@HSC and APTES/50 nm SiO2/PDA@HSC
Oil-water flux/(L·m-2·h-1) | Pure water flux/(L·m-2·h-1) | Ref. | |
---|---|---|---|
1 | — | 6 369 | [ |
2 | 1389±67 | — | [ |
3 | — | 9 700 | [ |
4 | 762 | — | [ |
5 | 1720±20 | — | [ |
6 | 7184 | 11 465 | This work |
表1 本工作与其它工作的膜通量对比
Table 1 Comparison of membrane flux between this work and other work
Oil-water flux/(L·m-2·h-1) | Pure water flux/(L·m-2·h-1) | Ref. | |
---|---|---|---|
1 | — | 6 369 | [ |
2 | 1389±67 | — | [ |
3 | — | 9 700 | [ |
4 | 762 | — | [ |
5 | 1720±20 | — | [ |
6 | 7184 | 11 465 | This work |
图 9 HSC和APTES/x nm SiO2/PDA@HSC(x=50,300,500)分离汽油-水混合物的滤液萃取后的(A)紫外-可见全波扫描图、(B)滤液含油量和分离效率和(C)纯水和汽油-水通量
Fig.9 (A) UV-Vis scan of gasoline-water mixture separation filter after extraction, (B) oil content of filter and separation efficiency and (C) membrane flux of water and gasoline-water mixture of HSC and APTES/x nm SiO2/PDA@HSC(x=50,300,500)
图10 (A)HSC、(B)APTES/50 nm SiO2/PDA@HSC、(C)APTES/300 nm SiO2/PDA@HSC和(D)APTES/500 nm SiO2/PDA@HSC分离油水混合物(汽油用油红O染红)后分离膜的油污染情况;(E、F)分别为水下油接触角的Wenzel状态和Cassie-Baxter′s状态
Fig.10 Membrane surfaces after gasoline-water mixture separation (gasoline incarnadined by oil red O) (A)HSC, (B) APTES/50 nm SiO2/PDA@HSC, (C) APTES/300 nm SiO2/PDA@HSC, (D) APTES/500 nm SiO2/PDA@HSC, (E, F) are the Wenzel state and Cassie-Baxter′s state of underwater oil contact angle, respectively
图12 APTES/50 nm SiO2/PDA@HSC分离(A、B)花生油-水混合物和(C、D)泵油-水混合物的过程图
Fig.12 (A,B) Peanut oil and (C,D) pump oil separation process of the oil-water mixture by APTES/50 nm SiO2/PDA@HSC
图13 HSC和APTES/50 nm SiO2/PDA@HSC分离花生油-水和泵油-水混合物通量和分离效率
Fig.13 HSC and APTES/50 nm SiO2/PDA@HSC separation fluxes and separation efficiency of peanut oil-water and pump oil-water mixtures
1 | LIU Q, PATEL A A, LIU L. Superhydrophilic and underwater superoleophobic poly(sulfobetaine methacrylate)-grafted glass fiber filters for oil-water separation[J]. ACS Appl Mater Inter, 2014, 6(12): 8996-9003. |
2 | 李文涛, 雍佳乐, 杨青, 等. 基于特殊润湿性材料的油水分离[J]. 物理化学学报, 2018, 34(5): 456-475. |
LI W T, YONG J L, YANG Q, et al. Oil-water separation base on the materials with special wettability[J]. Chin Acta Phys-Chim Sin, 2018, 34(5): 456-475. | |
3 | 彭华乔, 石涛, 薛森, 等. 用于油水分离超疏水材料的研究进展[J]. 化工新型材料, 2021, 49(7): 39-41, 51. |
PENG H Q, SHI T, XUE S, et al. Reasearch progress on superhydrophobic material for oil-water separation[J]. Chin New Chem Mater, 2021, 49(7): 39-41,51. | |
4 | IVSHINA I B, KUYUKINA M S, KRIVORUCHKO A V, et al. Oil spill problems and sustainable response strategies through new technologies[J]. Environ Sci: Proc Imp, 2015, 17(7): 1201-1219. |
5 | 江雷. 从自然到仿生的超疏水纳米界面材料[J]. 化工进展, 2003(12): 1258-1264. |
JIANG L. Nanostructured materials with superhydrophobic surface-from nature to biomimesis[J]. Chin Chem Ind Eng Prog, 2003(12): 1258-1264. | |
6 | 王鹏伟, 刘明杰, 江雷. 仿生多尺度超浸润界面材料[J]. 物理学报, 2016, 65(18): 61-83. |
WANG P W, LIU M J, JIANG L. Bioinspired multiscale interfacial materials with superwettability[J]. Chin Acta Phy Sin, 2016, 65(18): 61-83. | |
7 | QU M, LIU Q, LIU L, et al. A superwettable functionalized-fabric with pH-sensitivity for controlled oil/water, organic solvents separation, and selective oil collection from water-rich system[J]. Sep Purif Technol, 2021, 254: 117665. |
8 | 侯琳刚, 马利利, 周亦晨, 等. 低表面能化合物在超浸润材料中的应用[J]. 化学进展, 2018, 30(12): 1887-1898. |
HOU L G, MA L L, ZHOU Y C, et al. Application of low surface energy compounds to the superwetting materials[J]. Prog Chem, 2018, 30(12): 1887-1898. | |
9 | FENG L, ZHANG Z, MAI Z, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angew Chem Int Ed Engl, 2004, 43(15): 2012-2014. |
10 | CRICK C R, GIBBINS J A, PARKIN I P. Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil-water separation[J]. J Mater Chem A, 2013, 1(19): 5943-5948. |
11 | QIU L, ZHANG J, GUO Z, et al. Asymmetric superwetting stainless steel meshes for on-demand and highly effective oil-water emulsion separation[J]. Sep Purif Technol, 2021, 273: 118994. |
12 | ZHANG L, HE Y, LUO P, et al. Photocatalytic GO/M88A “interceptor plate” assembled nanofibrous membrane with photo-Fenton self-cleaning performance for oil/water emulsion separation[J]. Chem Eng J, 2022, 427: 130948. |
13 | WANG H, LI J, YU X, et al. Facile fabrication of super-hydrophilic cellulose hydrogel-coated mesh using deep eutectic solvent for efficient gravity-driven oil/water separation[J]. Cellulose, 2020, 28(2): 949-960. |
14 | SUN F, LI T T, REN H T, et al. Dopamine-decorated lotus leaf-like PVDF/TiO2 membrane with underwater superoleophobic for highly efficient oil-water separation[J]. Proc Saf Environ Prot, 2021, 147: 788-797. |
15 | SONG P, LU Q. Porous clusters of metal-organic framework coated stainless steel mesh for highly efficient oil/water separation[J]. Sep Purif Technol, 2020, 238: 116454. |
16 | ZUO J H, CHENG P, CHEN X F, et al. Ultrahigh flux of polydopamine-coated PVDF membranes quenched in air via thermally induced phase separation for oil/water emulsion separation[J]. Sep Purif Technol, 2018, 192: 348-359. |
17 | YOU H, SONG G, LIU Q, et al. A facile route for the fabrication of a superhydrophilic and underwater superoleophobic phosphorylated PVA-coated mesh for both oil/water immiscible mixture and emulsion separation[J]. Appl Surf Sci, 2021, 537: 147986. |
18 | YIN Y, ZHU L, GUO T, et al. Microphone-like Cu-CAT-1 hierarchical structures with ultra-low oil adhesion for highly efficient oil/water separation[J]. Sep Purif Technol, 2020, 241: 116688. |
19 | ZHENG L, LI H, LAI X, et al. Superwettable Janus nylon membrane for multifunctional emulsion separation[J]. J Mem Sci, 2022, 642: 119995. |
20 | 元博, 宋高臣, 李莹, 等. Tris缓冲体系下NiTi表面制备聚多巴胺薄膜提高其耐蚀性能[J]. 化工管理, 2019(4): 91-92. |
YUAN B, SONG G C, LI Y, et al. Polydopamine film was prepared on NiTi surface under Tris buffering system to improve its corrosion resistance[J]. Chem Enter Manage, 2019(4): 91-92. | |
21 | 闵璐. UV2100紫外可见分光光度计在污水分析的应用[J]. 科技创新与应用, 2016(24): 80. |
MIN L. Application of UV2100 ultraviolet visible spectrophotometer in sewage analysis[J]. Technol Innov Appl, 2016(24): 80. | |
22 | 魏强兵, 岳芹宇, 李乐乐, 等. 聚多巴胺辅助两性离子聚合物界面组装制备水润滑纳米涂层[J]. 摩擦学学报, 2019, 39(4): 387-395. |
WEI Q B, YUE Q Y, LI L L, et al. Polydopamine assisted Co-assembly for fabrication of zwitterionic polymer nanocoating with efficient aqueous lubrication[J]. Tribology, 2019, 39(4): 387-395. | |
23 | 楚刚辉, 刘琴. 聚多巴胺包覆氨基硅球用于木犀草素的富集及检测[J]. 化学研究与应用, 2020, 32(3): 429-435. |
CHU G H, LIU Q. Enrichment and dermination of luteolin by ploydopamine-coated amino silica[J]. Chem Res Appl, 2020, 32(3): 429-435. | |
24 | WANG R, ZHAO X, JIA N, et al. Superwetting oil/water separation membrane constructed from in situ assembled metal-phenolic networks and metal-organic frameworks[J]. ACS Appl Mater Inter, 2020, 12(8): 10000-10008. |
25 | VELAYI E, NOROUZBEIGI R. A mesh membrane coated with dual-scale superhydrophobic nano zinc oxide: efficient oil-water separation[J]. Sur Coat Technol, 2020, 385: 125394. |
26 | QI Z, SHI G G, SUN Q, et al. Robust PVA-GO-TiO2 composite membrane for efficient separation oil-in-water emulsions with stable high flux[J]. J Membr Sci, 2021, 640: 119836. |
27 | WU M M, XIANG B, MU P, et al. Janus nanofibrous membrane with special micro-nanostructure for highly efficient separation of oil-water emulsion[J]. Sep Purif Technol, 2022, 297: 121532. |
28 | JUNG Y C, BHUSHAN B. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity[J]. Langmuir, 2009, 25(24): 14165-14173. |
[1] | 丁小健, 曹从军, 侯成敏, 马含笑, 胡娇, 任梦洁, 杨国勇. 用于油/水分离的环保无氟超疏水织物的制备与性能[J]. 应用化学, 2022, 39(9): 1391-1400. |
[2] | 章晶晶, 肖鑫, 施冬健, 陈明清. 聚多巴胺在强负电型微球表面的形貌调控[J]. 应用化学, 2020, 37(7): 756-763. |
[3] | 彭继华, 郭贵宝. 四甲基氢氧化铵改性聚偏氟乙烯一步接枝聚苯乙烯磺酸油水分离膜的制备及性能[J]. 应用化学, 2019, 36(8): 909-916. |
[4] | 王贺, 罗静, 李小杰, 施冬健, 陈明清. 沉淀法高效制备聚多巴胺纳米粒子[J]. 应用化学, 2019, 36(2): 155-160. |
[5] | 冷爽, 王韬, 杨敏, 赵彦芝, 陆伟, 王若明, 孙国英. 基于聚多巴胺的氮掺杂碳材料的制备及其电化学性能[J]. 应用化学, 2018, 35(4): 477-483. |
[6] | 刘俊劭, 刘瑞来, 赵瑨云, 饶瑞晔. 三醋酸纤维素纳米纤维膜的制备及其油水分离应用[J]. 应用化学, 2017, 34(5): 512-518. |
[7] | 石彦龙, 汪志丹, 方芸, 吕涛, 冯晓娟, 冯雷, 杨武. 超疏水超亲油铜网的制备及其在油水分离中的应用[J]. 应用化学, 2017, 34(4): 472-480. |
[8] | 杨啸天, 帅茜, 罗艳梅, 董亦可, 谭月明, 陈波, 马铭. 聚二甲基硅氧烷/微纳米银/聚多巴胺修饰的超疏水海绵的制备和应用[J]. 应用化学, 2015, 32(6): 726-732. |
[9] | 周聪, 陈硕, 朱卫桃, 袁平, 杨子辉, 李彬, 陈波. 超疏水滤纸的制备与应用[J]. 应用化学, 2012, 29(03): 297-303. |
[10] | 李云龙, 苏招红, 陈超, 孟越, 谢青季. 聚多巴胺/多壁碳纳米管/玻璃碳电极上多巴胺的电分析[J]. 应用化学, 2011, 28(09): 1046-1051. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||