应用化学 ›› 2023, Vol. 40 ›› Issue (3): 309-316.DOI: 10.19894/j.issn.1000-0518.220161
• 综合评述 • 下一篇
蔡泳昱, 吴泳锡, 李方彤, 谢东, 王一竹, 张美玉, 戴雨霖, 郑飞(), 越皓()
收稿日期:
2022-05-01
接受日期:
2022-09-15
出版日期:
2023-03-01
发布日期:
2023-03-27
通讯作者:
郑飞,越皓
基金资助:
Yong-Yu CAI, Yong-Xi WU, Fang-Tong LI, Dong XIE, Yi-Zhu WANG, Mei-Yu ZHANG, Yu-Lin DAI, Fei ZHENG(), Hao YUE()
Received:
2022-05-01
Accepted:
2022-09-15
Published:
2023-03-01
Online:
2023-03-27
Contact:
Fei ZHENG,Hao YUE
About author:
yuehao@sohu.comSupported by:
摘要:
神经退行性疾病是一种发生于中枢神经系统,具有高度致残、致死性的疾病,主要发病人群为中老年群体,目前该类疾病的发病机制尚不清楚,没有有效的治疗策略。随着我国老龄化程度的加深,神经退行性疾病对居民身体健康造成严重威胁。肠道菌群作为寄生在胃肠道中的微生物,与人体呈互利共生的关系,对生命健康起到至关重要的作用,神经退行性疾病的发展伴随着肠道菌群及其相关代谢产物的改变。文章综述了肠道菌群及其代谢产物与神经退行性疾病相互影响的机制,并探讨通过肠道菌群治疗神经退行性疾病的潜在价值,以期为神经退行性疾病的治疗提供新的研究方向。
中图分类号:
蔡泳昱, 吴泳锡, 李方彤, 谢东, 王一竹, 张美玉, 戴雨霖, 郑飞, 越皓. 肠道菌群及其代谢产物与神经退行性疾病关系研究进展[J]. 应用化学, 2023, 40(3): 309-316.
Yong-Yu CAI, Yong-Xi WU, Fang-Tong LI, Dong XIE, Yi-Zhu WANG, Mei-Yu ZHANG, Yu-Lin DAI, Fei ZHENG, Hao YUE. Research Progress on the Relationship Between Gut Microbiota and Its Metabolites and Neurodegenerative Diseases[J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 309-316.
Neurodegenerative disease | Increased genus | Reduced genus | Ref. |
---|---|---|---|
Alzheimer's disease | C21 | Ruminococcus, Butyricicoccus pullicaecorum | [ |
Parkinson's disease | Bifidobacterium, Collinsella, Bilophila, Akkermansia | Rothia,Faecalibacterium, Vibrio Butyricum vibrio, Vivibrio Pseudobutyricum | [ |
Multiple sclerosis | g24 FCEY Clostridium g24 FCEY, Akkermansia, Bifidobacterium, Streptococcus | Erysipelotrichaceae, Blautia, Clostridium, Bacteroides.Stercoris, Bacteroides.coprophilus | [ |
Atrophic lateral sclerosis | Escherichia, Streptococcussalivarius, Lactobacillus, Citrobacter, Coprococcus Ruminococcaceae NK4A214, Ruminococcaceae UCG-014, Shigella, Bifidobacterium, Akkermansia | Rothia, Eubacterium, JC118 Clostridiaceae bacterium JC118, Coprobacter fastidiosus. Ruminococcus sp 51 39 BFAA | [ |
表1 神经退行性疾病中肠道菌群的变化[9-16]
Table 1 Changes in gut microbiota in neurodegenerative diseases[9-16]
Neurodegenerative disease | Increased genus | Reduced genus | Ref. |
---|---|---|---|
Alzheimer's disease | C21 | Ruminococcus, Butyricicoccus pullicaecorum | [ |
Parkinson's disease | Bifidobacterium, Collinsella, Bilophila, Akkermansia | Rothia,Faecalibacterium, Vibrio Butyricum vibrio, Vivibrio Pseudobutyricum | [ |
Multiple sclerosis | g24 FCEY Clostridium g24 FCEY, Akkermansia, Bifidobacterium, Streptococcus | Erysipelotrichaceae, Blautia, Clostridium, Bacteroides.Stercoris, Bacteroides.coprophilus | [ |
Atrophic lateral sclerosis | Escherichia, Streptococcussalivarius, Lactobacillus, Citrobacter, Coprococcus Ruminococcaceae NK4A214, Ruminococcaceae UCG-014, Shigella, Bifidobacterium, Akkermansia | Rothia, Eubacterium, JC118 Clostridiaceae bacterium JC118, Coprobacter fastidiosus. Ruminococcus sp 51 39 BFAA | [ |
1 | HAMID A M, MITRA-SADAT S S, ZARRINDAST M R. Therapeutic potential of stem cells for treatment of neurodegenerative diseases[J]. Biotechnol Lett, 2020, 42(7): 1073-1101. |
2 | 黄宗晖, 周荣斌. 神经炎症与神经退行性疾病[J]. 科技导报, 2021, 39(20): 45-55. |
HUANG Z H, ZHOU R B. Neuroinflammation and neurodegenerative diseases[J]. Sci Technol Rev, 2021, 39(20): 45-55. | |
3 | 陈晓, 郑玉璐, 姚笛. 人口老龄化、工业智能化与经济高质量发展[J]. 统计与决策, 2022(6): 129-132. |
CHEN X, ZHENG Y L, YAO D. Population aging, industrial intelligence and high-quality economic development[J]. Statistics Decision, 2022(6): 129-132. | |
4 | 钟钰, 郑琴, 胡鹏翼, 等. 植物精油抗衰老的药理作用与机制的研究进展[J]. 中草药, 2019, 50(22): 5584-5590. |
ZHONG Y, ZHENG Q, HU P Y, et al. Research progress on the anti-aging pharmacological effects and mechanisms of plant essential oils[J]. Chin Traditional, Herbal Drugs, 2019, 50(22): 5584-5590. | |
5 | MONTIEL-CASTRO A J, GONZÁLEZ-CERVANTES R M, BRAVO-RUISECO G, et al. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality[J]. Front Integr Neurosci, 2013, 7: 70. |
6 | SUGANYA K, KOO B S. Gut-brain axis: role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial and immune pathways to improve brain functions[J]. Int J Mol Sci, 2020, 21(20): 7551. |
7 | RASKOY H, BURCHARTH J, POMMERGARRD H C, et al. Irritable bowel syndrome, the microbiota and the gut-brain axis[J]. Gut Microbes, 2016, 7(5): 365-383. |
8 | JANDHYALA SM, TALUKDAR R, SUBRAMANYAM C, et al. Role of the normal gut microbiota[J]. World J Gastroenterol, 2015, 21(29): 8787-8803. |
9 | ZHANG L, WANG Y, XIA X Y, et al. Altered gut microbiota in a mouse model of Alzheimer's disease[J]. J Alzheimers Dis, 2017, 60(4):1241-1257. |
10 | CIRSTEA M S, YU A C, GOLZ E, et al. Microbiota composition and metabolism are associated with gut function in Parkinson's disease[J]. Mov Disord, 2020, 35(7): 1208-1217. |
11 | SCHEPERJANS F, AHO V, PEREIRA P A, et al. Gut microbiota are related to Parkinson's disease and clinical phenotype[J]. Mov Disord, 2015, 30(3): 350-358. |
12 | VASCELLARI S, PALMAS V, MELIS M, et al. Gut microbiota and metabolome Alterations associated with Parkinson's disease[J]. mSystems, 2020, 5(5): e00561. |
13 | MIYAKE S, KIM S, SUDA W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters[J]. PLoS One, 2015, 10(9): e0137429. |
14 | COX L M, MAGHZI A H, LIU S, et al. Gut microbiome in progressive multiple sclerosis[J]. Ann Neurol, 2021, 89(6): 1195-1211. |
15 | DI GIOIA D, BOZZI CIONCI N, BAFFONI L, et al. A prospective longitudinal study on the microbiota composition in amyotrophic lateral sclerosis[J]. BMC Med, 2020, 18(1): 153. |
16 | NICHOLSON K, BIOMEVIK K, ABU-ALI G, et al. The human gut microbiota in people with amyotrophic lateral sclerosis[J]. Amyotroph Lateral Scler Frontotemporal Degener, 2021, 22(3/4): 186-194. |
17 | LÓPEZ-OTÍN C, BLASCO MA, PARTRIDGE L, et al. The hallmarks of aging[J]. Cell, 2013, 153(6): 1194-1217 |
18 | 赵鹏, 孙亚平, 陈红, 等. 阿尔茨海默病发病机制探究[J]. 中风与神经疾病杂志, 2016, 33(1): 86-89 |
ZHAO P, SUN Y P, CHEN H, et al. Probe into the pathogenesis of Alzheimer's disease[J]. J Apoplexy Nerv Dis, 2016, 33(1): 86-89. | |
19 | ZHUANG Z Q, SHEN L L, LI W W, et al. Gut microbiota is altered in patients with Alzheimer's disease[J]. J Alzheimers Dis, 2018, 63(4): 1337-1346. |
20 | NGUYEN M, WONG Y C, YSSELSTEIN D, et al. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson's disease[J]. Trends Neurosci, 2019, 42(2): 140-149. |
21 | SCHEPICI G, SILVESTRO S, BRAMANTI P, et al. The gut microbiota in multiple sclerosis: an overview of clinical trials[J]. Cell Transplant, 2019, 28(12): 1507-1527. |
22 | 刘玥, 朱瑜, 江建香, 等. 肌萎缩侧索硬化致病蛋白与自噬相关研究进展[J]. 中国老年学杂志, 2022, 42(5): 1239-1243. |
LIU Y, ZHU Y, JIANG J X, et al. Research progress of amyotrophic lateral sclerosis pathogenic proteins and autophagy[J]. Chin J Gerontol, 2022, 42(5): 1239-1243. | |
23 | BLOCK M L, HONG J S. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism[J]. Prog Neurobiol, 2005, 76(2): 77-98. |
24 | 吴永继. 杜仲水提物对脂多糖诱导的小鼠神经炎症的保护作用及其机制研究[D]. 咸阳: 西北农林科技大学, 2021. |
WU Y J. Protective effect and mechanism of Eucommia ulmoides water extract on lipopolysaccharide-induced neuroinflammation in mice[D]. Xianyang: Northwest A&F University, 2021. | |
25 | MAHMOUDIANDEHKORDI S, ARNOLD M, NHO K, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-an emerging role for gut microbiome[J]. Alzheimers Dement, 2019, 15(1): 76-92. |
26 | BRUNT V E, LAROCCA T J, BAZZONI A E, et al. The gut microbiome-derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging [J]. Geroscience, 2021, 43(1): 377-394. |
27 | CANDELLI M, FRANZA L, PIGAATARO G, et al. Interaction between lipopolysaccharide and gut gicrobiota in inflammatory bowel diseases[J]. Int J Mol Sci, 2021, 22(12): 6242. |
28 | GUO S, Al-SADI R, SAID H M, et al. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14[J]. Am J Pathol, 2013, 182(2): 375-387. |
29 | 关杨. 萝卜硫素及其衍生物对LPS活化的BV2小胶质细胞神经炎性的保护作用及分子机制研究[D]. 沈阳: 辽宁大学, 2021. |
GUAN Y. Protective effect and molecular mechanism of sulforaphane and its derivatives on LPS-activated BV2 microglial neuroinflammation[D]. Shenyang: Liaoning University, 2021. | |
30 | CHERRY J D, OLSCHOWKA J A, O'BANION M K. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed[J]. J Neuroinflammation, 2014, 11: 98. |
31 | BIAN Y, DONG Y, SUN J, et al. Protective effect of kaempferol on LPS-induced inflammation and barrier dysfunction in a coculture model of intestinal epithelial cells and intestinal microvascular endothelial cells[J]. J Agric Food Chem, 2020, 68(1): 160-167. |
32 | WU X X, HUANG X L, CHEN R R, et al. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-induced inflammation in caco-2 cell monolayers[J]. Inflammation, 2019, 42(6): 2215-2225. |
33 | NAKAMURA Y. Regulating factors for microglial activation[J]. Biol Pharm Bull, 2002, 25(8): 945-953. |
34 | KWON H S, KOH S H. Neuroinflammation in neuroclegenerative disorders: the roles of microglia and astrocytes[J]. Transl Neurodegener, 2020, 9(1): 42. |
35 | SILVA Y P, BERNARDI A, FROZZA R L. The role of short-chain fatty acids from gut microbiota in gut-brain communication[J]. Front Endocrinol, 2020, 11: 25. |
36 | RASMUSSEN H S, HOLTUG K, MORTENSEN B. Short chain fatty acids in the human large intestine. The significance for gastrointestinal health and disease[J]. Ugeskr Laeg, 1988, 150(44): 2635-2638. |
37 | YISSACHAR N,ZHOU Y,UNG L,et al. An intestinal organ culture system uncovers a role for the nervous system in microbeimmune crosstalk[J]. Cell, 2017, 168(6): 1135-1148. |
38 | WENZEL T J, GATES E J, RANGER A L, et al. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells[J]. Mol Cell Neurosci, 2020, 105: 103493. |
39 | HOU Y, LI X, LIU C, et al. Neuroprotective effects of short-chain fatty acids in MPTP induced mice model of Parkinson's disease[J]. Exp Gerontol, 2021, 150: 111376. |
40 | LIU J, JIN Y, YE Y, et al. The neuroprotective effect of short chain fatty acids against sepsis-associated encephalopathy in mice[J]. Front Immunol, 2021, 12: 626894. |
41 | FANG J Y, RICHARDSON B C. The MAPK signalling pathways and colorectal cancer[J]. Lancet Oncol, 2005, 6(5): 322-327. |
42 | HO L, ONO K, TSUJI M, MAZZOLA P, et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer's disease-type beta-amyloid neuropathological mechanisms[J]. Expert Rev Neurother, 2018, 18(1): 83-90. |
43 | 杨玲, 周素芳, 路月红, 等. 基于LPS/TLR4信号通路探讨酒精性肝病大鼠疾病进展的相关机制[J]. 医学研究生学报, 2022, 35(1): 35-40. |
YANG L, ZHOU S F, LU Y H, et al. The exploration of the mechanism of progression in ALD rats based on LPS/TLR4 signaling pathway[J]. J Medical Postgraduates, 2022, 35(1): 35-40. | |
44 | ZHAO Z, NING J, BAO X Q, et al. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis[J]. Microbiome, 2021, 9: 226. |
45 | 周传彬, 顾美娟. 肠道菌群代谢产物氧化三甲胺与认知功能障碍疾病关系的研究进展[J/OL]. 解放军医学杂志,2022: 1-9. |
ZHOU C B, GU M J. Research progress on the relationship between intestinal flora metabolite trimethylamine oxide and cognitive dysfunction diseases[J/OL]. Med J Chinese People's Liberation Army, 2022: 1-9. | |
46 | WANG Z, KLIPFELL E, BENNETT B J, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341): 57-63. |
47 | LI C, ZHU L, DAI Y, et al. Diet-induced high serum levels of trimethylamine-n-oxide enhance the cellular inflammatory response without exacerbating acute intracerebral hemorrhage injury in mice[J]. Oxid Med Cell Longev, 2022(2022): 1599747. |
48 | LANZ M, JANEIRO M H, MILAGRO F I, et al. Trimethylamine N-oxide (TMAO) drives insulin resistance and cognitive deficiencies in a senescence accelerated mouse model[J]. Mech Ageing Dev, 2022, 204: 111668. |
49 | ZHAO Y, DAI X Y, ZHOU Z, et al. Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice[J]. Acta Pharmacol Sin, 2016, 37(2): 196-203. |
50 | 杜李宇, 李倩滢, 陈伟哲, 等. 肠道菌群促炎与动脉粥样硬化关系研究进展[J]. 食品科学, 2022, 43(3): 325-332. |
DU L Y, LI Q Y, CHEN W Z, et al. Research progress on the relationship between intestinal flora pro-inflammatory and atherosclerosis[J]. Food Sci, 2022, 43(3): 325-332. | |
51 | 周植星, 王涛, 江振洲, 等. FXR调节胆汁酸合成和转运研究进展[J]. 中南药学, 2010, 8(5): 374-377. |
ZHOU Z X, WANG T, JIANG Z Z, et al. Research progress on the regulation of bile acid synthesis and transport by FXR[J]. Central South Pharm, 2010, 8(5): 374-377. | |
52 | WU Y, MO R, ZHANG M, et al. Grape seed proanthocyanidin alleviates intestinal inflammation through gut microbiota-bile acid crosstalk in mice[J]. Front Nutr, 2022(8): 786682. |
53 | SINHA S R, HAILESELASSIE Y, NGUYEN L P, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host Microbe, 2020, 27(4): 659-670. |
54 | KAUR H, SEEGER D, GOLOVKO S, et al. Liver bile acid changes in mouse models of Alzheimer's disease[J]. Int J Mol Sci, 2021, 22(14): 7451. |
55 | 朱广素, 赵建新, 张灏, 等. 短双歧杆菌对Aβ1-42导致的阿尔兹海默症小鼠肠道菌群及代谢物的影响[J]. 食品与发酵工业, 2022, 3: 70-77. |
ZHU G S, ZHAO J X, ZHANG H, et al. Effects of bifidobacterium breve on the intestinal flora and metabolites in mice with Alzheimer's disease induced by Aβ1-42 [J]. Food Ferment Ind, 2022, 3: 70-77. | |
56 | SUN J, XU J, YANG B, et al. Effect of clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer's disease via regulating gut microbiota and metabolites butyrate[J]. Mol Nutr Food Res, 2020, 64(2): e1900636. |
57 | ZHOU H, ZHAO J, LIU C, et al. Xanthoceraside exerts anti-Alzheimer's disease effect by remodeling gut microbiota and modulating microbial-derived metabolites level in rats[J]. Phytomedicine, 2022, 98: 153937. |
58 | SHI J, YIN Q, ZHANG L, et al. Zi Shen Wan Fang attenuates neuroinflammation and cognitive function via remodeling the gut microbiota in diabetes-induced cognitive impairment mice[J]. Front Pharmacol, 2022, 13: 898360. |
59 | WANG Q J, SHEN Y E, WANG X, et al. Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments in APP/PS1 mice[J]. Aging (Albany NY), 2020, 12(1): 628-649. |
[1] | 徐维茵, 许天阳, 邵思梦, 谢兆阳, 杨洪梅, 于澎. 人参活性成分在防治神经退行性疾病中应用的研究进展[J]. 应用化学, 2023, 40(4): 486-499. |
[2] | 刘明, 宋凤媛, 李方彤, 杨迪, 越皓, 戴雨霖, 郑飞, 黄鑫. 天然产物与肠道微生物相互作用的研究进展[J]. 应用化学, 2021, 38(4): 367-375. |
[3] | 越皓, 周东月, 张美玉, 张琰, 戴雨霖, 郑飞, 朱英豪. 红参中原人参三醇型皂苷组在肠道菌群中体外转化及对肠道菌群的作用[J]. 应用化学, 2021, 38(3): 323-330. |
[4] | 徐玉林,刘春荣. 蛋氨酸亚砜/蛋氨酸亚砜还原酶荧光检测研究进展[J]. 应用化学, 2018, 35(1): 21-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||