1 |
ALKILANI A Z, MCCRUDDEN M T C, DONNELLY R F. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum[J]. Pharmaceutics, 2015, 7(4): 438-470.
|
2 |
RAHMANI F, ZIYADI H, BAGHALI M, et al. Electrospun PVP/PVA nanofiber mat as a novel potential transdermal drug-delivery system for buprenorphine: a solution needed for pain management[J]. Appl Sci-Basel, 2021, 11(6): 2779.
|
3 |
KAMBLE R N, GAIKWAD S, MASKE A, et al. Fabrication of electrospun nanofibres of BCS II drug for enhanced dissolution and permeation across skin[J]. J Adv Res, 2016, 7(3): 483-489.
|
4 |
PUNNEL L C, LUNTER D J. Film-forming systems for dermal drug delivery[J]. Pharmaceutics, 2021, 13(7): 932.
|
5 |
WOKOVICH A M, PRODDUTURI S, DOUB W H, et al. Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute[J]. Eur J Pharm Biopharm, 2006, 64(1): 1-8.
|
6 |
BAKER T B, PIPER M E, STEIN J H, et al. Effects of nicotine patch vs varenicline vs combination nicotine replacement therapy on smoking cessation at 26 weeks a randomized clinical trial[J]. Jama-J Am Med Assoc, 2016, 315(4): 371-379.
|
7 |
WITIKA B A, MWEETWA L L, TSHIAMO K O, et al. Vesicular drug delivery for the treatment of topical disorders: current and future perspectives[J]. J Pharm Pharmacol, 2021, 73(11): 1427-1441.
|
8 |
RAMADON D, MCCRUDDEN M T C, COURTENAY A J, et al. Enhancement strategies for transdermal drug delivery systems: current trends and applications[J]. Drug Deliv Transl Re, 2022, 12(4): 758-791.
|
9 |
MANIKKATH J, SUBRAMONY J A. Toward closed-loop drug delivery: integrating wearable technologies with transdermal drug delivery systems[J]. Adv Drug Deliver Rev, 2021: 179.
|
10 |
ARIAMOGHADDAM A R, EBRAHIMI-HOSSEINZADEH B, HATAMIAN-ZARMI A, et al. In vivo anti-obesity efficacy of curcumin loaded nanofibers transdermal patches in high-fat diet induced obese rats[J]. Mat Sci Eng C-Mater, 2018, 92: 161-71.
|
11 |
PHAN D N, KHAN M Q, NGUYEN N T, et al. A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes[J]. Carbohyd Polym, 2021: 252: 117175.
|
12 |
UMAR M, ULLAH A, NAWAZ H, et al. Wet-spun Bi-component alginate based hydrogel fibers: development and in-vitro evaluation as a potential moist wound care dressing[J]. Int J Biol Macromol, 2021, 168: 601-610.
|
13 |
STA M, TADA D B, MEDEIROS S F, et al. Electrospun poly(NVCL-co-AA) fibers as potential thermo- and pH-sensitive agents for controlled release of hydrophobic drugs[J]. Mater Sci Eng B: Adv, 2022, 276: 115531.
|
14 |
RUPHUY G, SALON I, TOMAS J, et al. Encapsulation of poorly soluble drugs in yeast glucan particles by spray drying improves dispersion and dissolution properties[J]. Int J Pharmaceut, 2020, 576: 118990.
|
15 |
BALASHANMUGAM P, SUCHARITHRA G, AGNES M S, et al. Efficacy of biopolymeric PVA-AuNPs and PCL-Curcumin Loaded electrospun nanofibers anticancer activity against A431 skin cancer cell line[J]. Mater Today Commun, 2020, 25: 101276.
|
16 |
DING C B, ZHOU C X, FAN Y Y, et al. Electrospun polylactic acid/sulfadiazine sodium/proteinase nanofibers and their applications in treating frostbite[J]. J Appl Polym Sci, 2022, 139: e51716.
|
17 |
SUGUMARAN D, RATHINAM R. Siddha drug incorporated electrospun nanofibrous mat with controlled drug release[J]. Mater Lett, 2021, 302: 130365.
|
18 |
SHENG S, YIN X, CHEN F, et al. Preparation and characterization of PVA-co-PE drug-loaded nanofiber membrane by electrospinning technology[J]. AAPS Pharm Sci Tech, 2020, 21(5): 199.
|
19 |
PARIN F N, YILDIRIM K. Preparation and characterisation of vitamin-loaded electrospun nanofibres as promising transdermal patches[J]. Fibres Text East Eur, 2021, 29(1): 17-25.
|
20 |
SARWAR M N, ULLAH A, HAIDER M K, et al. Evaluating antibacterial efficacy and biocompatibility of PAN nanofibers loaded with diclofenac sodium salt[J]. Polymers-Basel, 2021, 13(4): 510.
|
21 |
OPANASOPIT P, SILA-ON W, ROJANARATA T, et al. Fabrication and properties of capsicum extract-loaded PVA and CA nanofiber patches[J]. Pharm Dev Technol, 2013, 18(5): 1140-1147.
|
22 |
LI J R, FU R, LI L, et al. Co-delivery of Dexamethasone and green tea polyphenols using electrospun ultrafine fibers for effective treatment of keloid[J]. Pharm Res-Dordr, 2014, 31(7): 1632-1643.
|
23 |
NASSANI A A, ALDAKHIL A M, ABRO M M Q, et al. Environmental Kuznets curve among BRICS countries: spot lightening finance, transport, energy and growth factors[J]. J Clean Prod, 2017, 154: 474-487.
|
24 |
SINGH H, SHARMA R, JOSHI M, et al. Transmucosal delivery of Docetaxel by mucoadhesive polymeric nanofibers[J]. Artif Cell Nanomed B, 2015, 43(4): 263-269.
|
25 |
RRAMASWAMY R, MANI G, VENKATACHALAM S, et al. Tetrahydro curcumin loaded PCL-PEG electrospun transdermal nanofiber patch: preparation, characterization, and in vitro diffusion evaluations[J]. J Drug Deliv Sci Tec, 2018, 44: 342-348.
|
26 |
MABROUK M, KUMAR P, CHOONARA Y E, et al. Artificial, triple-layered, nanomembranous wound patch for potential diabetic foot ulcer intervention[J]. Materials, 2018, 11(11): 2128.
|
27 |
ZHAO Z F, WANG Z Y, ZHANG C Q, et al. Polar polystyrene-isoprene-styrene copolymers with long polybutadiene branches[J]. J Appl Polym Sci, 2014, 131(11): 40303.
|
28 |
ZHAO Z F, WANG Z Y, ZHANG C Q. Preparation and characterization of polarity-modulated SIS-based hot-melt pressure-sensitive adhesives[J]. J Adhes Sci Technol, 2014, 28(11): 1090-1102.
|
29 |
ZHAO Z F, ZHANG R J, ZHANG C Q, et al. SISO-based hot-melt pressure-sensitive adhesives for transdermal delivery of hydrophilic drugs[J]. Int J Adhes Adhes, 2017, 74: 86-91.
|
30 |
WANG C X, LIU R, TANG X Z, et al. A Drug-in-adhesive matrix based on thermoplastic elastomer: evaluation of percutaneous absorption, adhesion, and skin irritation[J]. Aaps Pharmscitech, 2012, 13(4): 1179-1189.
|
31 |
ZHAO Z F, ZHOU Y S, ZHANG C Q, et al. Optimization of SIS-based hot-melt pressure-sensitive adhesives for transdermal delivery of hydrophilic drugs[J]. Int J Adhes Adhes, 2016, 68: 256-262.
|
32 |
ABBOUD T, WUTZLER A, RADUSCH H J. Effect of viscoelastic and surface properties on tack, peel adhesion and shear strength of polymer blends applied as hot melt pressure sensitive adhesive models comprising tackifying agents of various chemical nature[J]. Express Polym Lett, 2020, 14(8): 731-740.
|
33 |
EINSLA M, GRIFFITH W, HIMMELBERGER D, et al. Heat-activated pressure sensitive adhesives for linerless labels[J]. J Appl Polym Sci, 2019, 136(6): 47048.
|
34 |
曹通远. 热熔压敏胶技术及应用[M]. 北京: 化学工业出版社, 2018: 81-129.
|
|
CAO T Y. Hot melt pressure sensitive adhesive technology and application[M]. Beijing: Chemistry Industry Press, 2018: 81-129.
|
35 |
DOU P, ZHANG J. Study on adhesion properties of a hot-melt pressure-sensitive adhesive based on epoxidized styrene-isoprene-styrene triblock copolymers (ESIS) for transdermal drug delivery systems[J]. J Adhes, 2013, 89(5): 358-368.
|
36 |
MA J F, WANG C X, LUO H F, et al. Design and evaluation of a monolithic drug-in-adhesive patch for testosterone based on styrene-isoprene-styrene block copolymer[J]. J Pharm Sci-Us, 2013, 102(7): 2221-2234.
|
37 |
KHOSHBAKHT S, ASGHARI-SANA F, FATHI-AZARBAYJANI A, et al. Fabrication and characterization of tretinoin-loaded nanofiber for topical skin delivery[J]. Biomater Res, 2020, 24(1): 8.
|
38 |
NEMATPOUR N, FARHADIAN N, EBRAHIMI K S, et al. Sustained release nanofibrous composite patch for transdermal antibiotic delivery[J]. Colloids Surf A, 2020, 586: 124267.
|