
应用化学 ›› 2022, Vol. 39 ›› Issue (10): 1523-1532.DOI: 10.19894/j.issn.1000-0518.210553
刘丰硕1, 董茜2, 赵忠夫1(), 刘伟1, 张春庆1(
)
收稿日期:
2021-12-02
接受日期:
2022-04-27
出版日期:
2022-10-01
发布日期:
2022-10-05
通讯作者:
赵忠夫,张春庆
基金资助:
Feng-Shuo LIU1, Qian DONG2, Zhong-Fu ZHAO1(), Wei LIU1, Chun-Qing ZHANG1(
)
Received:
2021-12-02
Accepted:
2022-04-27
Published:
2022-10-01
Online:
2022-10-05
Contact:
Zhong-Fu ZHAO,Chun-Qing ZHANG
About author:
zhangchq@dlut.edu.cnSupported by:
摘要:
静电纺丝膜能有效提高经皮给药贴剂的透气性及释药性能,然而,它们多数不具有黏结性,难以直接贴敷于皮肤表面,药物到达皮肤表面的路径不通畅,影响经皮给药。以C5树脂赋予聚(苯乙烯-异戊二烯-苯乙烯)(SIS)静电纺丝膜压敏黏结性能,研究纺丝膜组成及模型药物合成辣椒素对SIS/C5静电纺丝膜结构、性能及释药性能的影响及调控规律。结果表明,当SIS与C5质量比为2∶1时,其静电纺丝膜贴剂具有优异的透气性(7.17×10-3 g/(h·cm2))及黏附性能(180(°)剥离强度0.2 kN/m,初黏力0.64 N/cm2,持粘性大于7 d);药物与聚合物基质相容性良好,无药物结晶析出,药物的载入有利于改善纺丝膜贴剂的水蒸气渗透性;8%(质量分数)载药量时,载药纺丝膜初黏力为0.6~0.8 N/cm2,180(°)剥离强度保持为0.2~0.3 kN/m,持粘性大于7 d,剥离时无残留;体外释药呈现缓释特征,不同载药量纺丝膜的药物24 h累计释放率均大于50%,满足外用贴剂使用要求。
中图分类号:
刘丰硕, 董茜, 赵忠夫, 刘伟, 张春庆. 自黏性经皮给药SIS/C5静电纺丝膜的结构及性能调控[J]. 应用化学, 2022, 39(10): 1523-1532.
Feng-Shuo LIU, Qian DONG, Zhong-Fu ZHAO, Wei LIU, Chun-Qing ZHANG. Structure and Performance Modulation of Self‑Adhesive SIS/C5 Electrospun Membranes for Transdermal Drug Delivery[J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1523-1532.
图1 (A)SC(4∶1)-4%、(B)SC(3∶1)-4%、(C)SC(7∶3)-4%、(D)SC(2∶1)-4%、(E)SC(3∶2)-4%和(F)SC(1∶1)-4%的SEM图
Fig.1 SEM images of (A) SC(4∶1)-4%, (B) SC(3∶1)-4%,(C) SC(7∶3)-4%, (D) SC(2∶1)-4%, (E) SC(3∶2)-4% and (F) SC(1∶1)-4%
样品 Sample | 初黏力 Tack force/(N·cm-2) | 180(°)剥离强度 180(°) peel strength/(kN·m-1) | 持粘性能 Holding power/d | 剥离残留 Stripping residue |
---|---|---|---|---|
SC(4∶1)?4% | 0.13±0.01 | 0.03±0.01 | >7 | No |
SC(3∶1)?4% | 0.29±0.02 | 0.10±0.01 | >7 | No |
SC(7∶3)?4% | 0.52±0.03 | 0.15±0.02 | >7 | No |
SC(2∶1)?4% | 0.64±0.02 | 0.20±0.01 | >7 | No |
SC(3∶2)?4% | 0.93±0.03 | 0.37±0.03 | >7 | No |
SC(1∶1)?4% | 1.15±0.04 | 0.62±0.03 | >7 | No |
表1 不同C5含量的纺丝膜基质的黏附性能
Table 1 Adhesion performance of fiber membrane matrix with different C5 contents
样品 Sample | 初黏力 Tack force/(N·cm-2) | 180(°)剥离强度 180(°) peel strength/(kN·m-1) | 持粘性能 Holding power/d | 剥离残留 Stripping residue |
---|---|---|---|---|
SC(4∶1)?4% | 0.13±0.01 | 0.03±0.01 | >7 | No |
SC(3∶1)?4% | 0.29±0.02 | 0.10±0.01 | >7 | No |
SC(7∶3)?4% | 0.52±0.03 | 0.15±0.02 | >7 | No |
SC(2∶1)?4% | 0.64±0.02 | 0.20±0.01 | >7 | No |
SC(3∶2)?4% | 0.93±0.03 | 0.37±0.03 | >7 | No |
SC(1∶1)?4% | 1.15±0.04 | 0.62±0.03 | >7 | No |
图4 (A) SC(2∶1)、 (B) SC(2∶1)-2%、 (C) SC(2∶1)-4%、 (D) SC(2∶1)-6%和(E) SC(2∶1)-8%的SEM图
Fig.4 SEM images of (A) SC(2∶1), (B) SC(2∶1)-2%, (C) SC(2∶1)-4%, (D) SC(2∶1)-6% and (E) SC(2∶1)-8%
样品 Sample | 初黏力 Tack force/(N·cm-2) | 剥离强度 180(°) peel strength/(kN·m-1) | 持粘性能 Holding power/d | 剥离残留 Stripping residue |
---|---|---|---|---|
SC(2∶1) | 0.77±0.02 | 0.32±0.01 | >7 | No |
SC(2∶1)?2% | 0.72±0.01 | 0.29±0.01 | >7 | No |
SC(2∶1)?4% | 0.64±0.02 | 0.20±0.01 | >7 | No |
SC(2∶1)?6% | 0.67±0.01 | 0.25±0.03 | >7 | No |
SC(2∶1)?8% | 0.68±0.02 | 0.27±0.01 | >7 | No |
表2 载药量不同的纺丝膜的黏附性能
Table 2 Adhesion performances of various electrospun membranes with different drug contents
样品 Sample | 初黏力 Tack force/(N·cm-2) | 剥离强度 180(°) peel strength/(kN·m-1) | 持粘性能 Holding power/d | 剥离残留 Stripping residue |
---|---|---|---|---|
SC(2∶1) | 0.77±0.02 | 0.32±0.01 | >7 | No |
SC(2∶1)?2% | 0.72±0.01 | 0.29±0.01 | >7 | No |
SC(2∶1)?4% | 0.64±0.02 | 0.20±0.01 | >7 | No |
SC(2∶1)?6% | 0.67±0.01 | 0.25±0.03 | >7 | No |
SC(2∶1)?8% | 0.68±0.02 | 0.27±0.01 | >7 | No |
图6 合成辣椒素含量不同的纺丝膜中药物(A)累计释放量曲线和(B)累计释放率曲线
Fig.6 (A) Cumulative release curves and (B) cumulative release rate curves of drugs in electrospun membranes containing different amounts of synthetic capsaicin
1 | ALKILANI A Z, MCCRUDDEN M T C, DONNELLY R F. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum[J]. Pharmaceutics, 2015, 7(4): 438-470. |
2 | RAHMANI F, ZIYADI H, BAGHALI M, et al. Electrospun PVP/PVA nanofiber mat as a novel potential transdermal drug-delivery system for buprenorphine: a solution needed for pain management[J]. Appl Sci-Basel, 2021, 11(6): 2779. |
3 | KAMBLE R N, GAIKWAD S, MASKE A, et al. Fabrication of electrospun nanofibres of BCS II drug for enhanced dissolution and permeation across skin[J]. J Adv Res, 2016, 7(3): 483-489. |
4 | PUNNEL L C, LUNTER D J. Film-forming systems for dermal drug delivery[J]. Pharmaceutics, 2021, 13(7): 932. |
5 | WOKOVICH A M, PRODDUTURI S, DOUB W H, et al. Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute[J]. Eur J Pharm Biopharm, 2006, 64(1): 1-8. |
6 | BAKER T B, PIPER M E, STEIN J H, et al. Effects of nicotine patch vs varenicline vs combination nicotine replacement therapy on smoking cessation at 26 weeks a randomized clinical trial[J]. Jama-J Am Med Assoc, 2016, 315(4): 371-379. |
7 | WITIKA B A, MWEETWA L L, TSHIAMO K O, et al. Vesicular drug delivery for the treatment of topical disorders: current and future perspectives[J]. J Pharm Pharmacol, 2021, 73(11): 1427-1441. |
8 | RAMADON D, MCCRUDDEN M T C, COURTENAY A J, et al. Enhancement strategies for transdermal drug delivery systems: current trends and applications[J]. Drug Deliv Transl Re, 2022, 12(4): 758-791. |
9 | MANIKKATH J, SUBRAMONY J A. Toward closed-loop drug delivery: integrating wearable technologies with transdermal drug delivery systems[J]. Adv Drug Deliver Rev, 2021: 179. |
10 | ARIAMOGHADDAM A R, EBRAHIMI-HOSSEINZADEH B, HATAMIAN-ZARMI A, et al. In vivo anti-obesity efficacy of curcumin loaded nanofibers transdermal patches in high-fat diet induced obese rats[J]. Mat Sci Eng C-Mater, 2018, 92: 161-71. |
11 | PHAN D N, KHAN M Q, NGUYEN N T, et al. A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes[J]. Carbohyd Polym, 2021: 252: 117175. |
12 | UMAR M, ULLAH A, NAWAZ H, et al. Wet-spun Bi-component alginate based hydrogel fibers: development and in-vitro evaluation as a potential moist wound care dressing[J]. Int J Biol Macromol, 2021, 168: 601-610. |
13 | STA M, TADA D B, MEDEIROS S F, et al. Electrospun poly(NVCL-co-AA) fibers as potential thermo- and pH-sensitive agents for controlled release of hydrophobic drugs[J]. Mater Sci Eng B: Adv, 2022, 276: 115531. |
14 | RUPHUY G, SALON I, TOMAS J, et al. Encapsulation of poorly soluble drugs in yeast glucan particles by spray drying improves dispersion and dissolution properties[J]. Int J Pharmaceut, 2020, 576: 118990. |
15 | BALASHANMUGAM P, SUCHARITHRA G, AGNES M S, et al. Efficacy of biopolymeric PVA-AuNPs and PCL-Curcumin Loaded electrospun nanofibers anticancer activity against A431 skin cancer cell line[J]. Mater Today Commun, 2020, 25: 101276. |
16 | DING C B, ZHOU C X, FAN Y Y, et al. Electrospun polylactic acid/sulfadiazine sodium/proteinase nanofibers and their applications in treating frostbite[J]. J Appl Polym Sci, 2022, 139: e51716. |
17 | SUGUMARAN D, RATHINAM R. Siddha drug incorporated electrospun nanofibrous mat with controlled drug release[J]. Mater Lett, 2021, 302: 130365. |
18 | SHENG S, YIN X, CHEN F, et al. Preparation and characterization of PVA-co-PE drug-loaded nanofiber membrane by electrospinning technology[J]. AAPS Pharm Sci Tech, 2020, 21(5): 199. |
19 | PARIN F N, YILDIRIM K. Preparation and characterisation of vitamin-loaded electrospun nanofibres as promising transdermal patches[J]. Fibres Text East Eur, 2021, 29(1): 17-25. |
20 | SARWAR M N, ULLAH A, HAIDER M K, et al. Evaluating antibacterial efficacy and biocompatibility of PAN nanofibers loaded with diclofenac sodium salt[J]. Polymers-Basel, 2021, 13(4): 510. |
21 | OPANASOPIT P, SILA-ON W, ROJANARATA T, et al. Fabrication and properties of capsicum extract-loaded PVA and CA nanofiber patches[J]. Pharm Dev Technol, 2013, 18(5): 1140-1147. |
22 | LI J R, FU R, LI L, et al. Co-delivery of Dexamethasone and green tea polyphenols using electrospun ultrafine fibers for effective treatment of keloid[J]. Pharm Res-Dordr, 2014, 31(7): 1632-1643. |
23 | NASSANI A A, ALDAKHIL A M, ABRO M M Q, et al. Environmental Kuznets curve among BRICS countries: spot lightening finance, transport, energy and growth factors[J]. J Clean Prod, 2017, 154: 474-487. |
24 | SINGH H, SHARMA R, JOSHI M, et al. Transmucosal delivery of Docetaxel by mucoadhesive polymeric nanofibers[J]. Artif Cell Nanomed B, 2015, 43(4): 263-269. |
25 | RRAMASWAMY R, MANI G, VENKATACHALAM S, et al. Tetrahydro curcumin loaded PCL-PEG electrospun transdermal nanofiber patch: preparation, characterization, and in vitro diffusion evaluations[J]. J Drug Deliv Sci Tec, 2018, 44: 342-348. |
26 | MABROUK M, KUMAR P, CHOONARA Y E, et al. Artificial, triple-layered, nanomembranous wound patch for potential diabetic foot ulcer intervention[J]. Materials, 2018, 11(11): 2128. |
27 | ZHAO Z F, WANG Z Y, ZHANG C Q, et al. Polar polystyrene-isoprene-styrene copolymers with long polybutadiene branches[J]. J Appl Polym Sci, 2014, 131(11): 40303. |
28 | ZHAO Z F, WANG Z Y, ZHANG C Q. Preparation and characterization of polarity-modulated SIS-based hot-melt pressure-sensitive adhesives[J]. J Adhes Sci Technol, 2014, 28(11): 1090-1102. |
29 | ZHAO Z F, ZHANG R J, ZHANG C Q, et al. SISO-based hot-melt pressure-sensitive adhesives for transdermal delivery of hydrophilic drugs[J]. Int J Adhes Adhes, 2017, 74: 86-91. |
30 | WANG C X, LIU R, TANG X Z, et al. A Drug-in-adhesive matrix based on thermoplastic elastomer: evaluation of percutaneous absorption, adhesion, and skin irritation[J]. Aaps Pharmscitech, 2012, 13(4): 1179-1189. |
31 | ZHAO Z F, ZHOU Y S, ZHANG C Q, et al. Optimization of SIS-based hot-melt pressure-sensitive adhesives for transdermal delivery of hydrophilic drugs[J]. Int J Adhes Adhes, 2016, 68: 256-262. |
32 | ABBOUD T, WUTZLER A, RADUSCH H J. Effect of viscoelastic and surface properties on tack, peel adhesion and shear strength of polymer blends applied as hot melt pressure sensitive adhesive models comprising tackifying agents of various chemical nature[J]. Express Polym Lett, 2020, 14(8): 731-740. |
33 | EINSLA M, GRIFFITH W, HIMMELBERGER D, et al. Heat-activated pressure sensitive adhesives for linerless labels[J]. J Appl Polym Sci, 2019, 136(6): 47048. |
34 | 曹通远. 热熔压敏胶技术及应用[M]. 北京: 化学工业出版社, 2018: 81-129. |
CAO T Y. Hot melt pressure sensitive adhesive technology and application[M]. Beijing: Chemistry Industry Press, 2018: 81-129. | |
35 | DOU P, ZHANG J. Study on adhesion properties of a hot-melt pressure-sensitive adhesive based on epoxidized styrene-isoprene-styrene triblock copolymers (ESIS) for transdermal drug delivery systems[J]. J Adhes, 2013, 89(5): 358-368. |
36 | MA J F, WANG C X, LUO H F, et al. Design and evaluation of a monolithic drug-in-adhesive patch for testosterone based on styrene-isoprene-styrene block copolymer[J]. J Pharm Sci-Us, 2013, 102(7): 2221-2234. |
37 | KHOSHBAKHT S, ASGHARI-SANA F, FATHI-AZARBAYJANI A, et al. Fabrication and characterization of tretinoin-loaded nanofiber for topical skin delivery[J]. Biomater Res, 2020, 24(1): 8. |
38 | NEMATPOUR N, FARHADIAN N, EBRAHIMI K S, et al. Sustained release nanofibrous composite patch for transdermal antibiotic delivery[J]. Colloids Surf A, 2020, 586: 124267. |
[1] | 程翠林, 马佳沛, 王玮琛, 王博阳, 王振宇. 天然产物静电纺纳米纤维在生物医药方面的应用[J]. 应用化学, 2021, 38(6): 605-614. |
[2] | 付凤艳,程敬泉. 静电纺丝纳米纤维在燃料电池质子交换膜中应用的研究进展[J]. 应用化学, 2020, 37(4): 405-415. |
[3] | 张亮, 贺辛亥, 任研伟, 陈彤善, 陈东圳. 静电纺纳米复合纤维柔性表面增强拉曼散射传感基底的研究进展[J]. 应用化学, 2020, 37(12): 1364-1373. |
[4] | 张守燕, 胡江磊, 史新翠, 章培标, 伊藤嘉浩. 电活性和生物活性多巴-胰岛素样生长因子-1@聚(乙交酯-丙交酯)/聚(3-己基噻吩)静电纺丝纤维的制备及神经组织工程应用[J]. 应用化学, 2019, 36(9): 1003-1014. |
[5] | 艾绯雪,赵桂艳,毕研峰,胡跃鑫. 静电纺丝制备杯芳烃功能化纳米纤维的应用[J]. 应用化学, 2019, 36(6): 611-621. |
[6] | 平林军, 刘秀, 尚树芳, 杨洲, 王冬, 曹晖, 何万里. 静电纺丝制备有机盐类非线性光学材料纳米纤维[J]. 应用化学, 2018, 35(8): 972-974. |
[7] | 樊晔, 韩贻陈, 夏咏梅, 薄纯玲, 王淑钰, 方云. 共轭亚油酸与海藻酸钠囊泡化自组装纳米容器及其药物缓释性能[J]. 应用化学, 2018, 35(12): 1478-1484. |
[8] | 隋春红, 王程, 韦雨清, 翟欢, 李楠, 董顺福, 韩丽琴. 疏水性聚丙烯酸/聚乙烯醇/葡萄糖淀粉酶复合纳米纤维膜的制备及酶学性质[J]. 应用化学, 2015, 32(12): 1364-1370. |
[9] | 刘大兴, 王明哲, 景遐斌, 黄宇彬. 二氯乙酸钠电纺纤维毡改善宫颈癌小鼠生存质量[J]. 应用化学, 2014, 31(07): 763-769. |
[10] | 郑曦, 陈思英, 陈震, 陈日耀, 陈晓. 碳包覆TiO2-CeO2纤维的制备及其光催化降解盐酸环丙沙星[J]. 应用化学, 2013, 30(11): 1326-1332. |
[11] | 彭冲, 杨冬梅, 李国岗, 连洪洲, 林君. 静电纺丝方法制备CaTiO3∶Er3+微米带及其上转换发光性质[J]. 应用化学, 2012, 29(12): 1438-1446. |
[12] | 沈云, 黄丹, 蒋学. 新型紫外线吸收剂的合成及其在聚乳酸超细纤维膜中的应用[J]. 应用化学, 2012, 29(07): 740-744. |
[13] | 徐松秀, 王寅宁, 丛远华, 蒋诗平, 李良彬. 静电纺丝法制备三维聚二甲基硅氧烷纳米通道[J]. 应用化学, 2012, 29(01): 23-28. |
[14] | 孙康, 王丽平. 壳聚糖静电纺纳米纤维的制备和特点[J]. 应用化学, 2011, 28(02): 123-130. |
[15] | 陈影声, 陈震, 卢才英, 郑曦, 陈晓, 陈日耀. 纳米碳纤维固载TiO2[J]. 应用化学, 2010, 27(10): 1188-1191. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 996
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 395
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||