应用化学 ›› 2022, Vol. 39 ›› Issue (7): 1147-1156.DOI: 10.19894/j.issn.1000-0518.210349
张晓丽2, 彭玉美1, 王庆伟1, 秦利霞1(), 刘肖霞1, 康诗钊1, 李向清1()
收稿日期:
2021-07-19
接受日期:
2021-11-23
出版日期:
2022-07-01
发布日期:
2022-07-11
通讯作者:
秦利霞,李向清
基金资助:
Xiao-Li ZHANG2, Yu-Mei PENG1, Qing-Wei WANG1, Li-Xia QIN1(), Xiao-Xia LIU1, Shi-Zhao KANG1, Xiang-Qing LI1()
Received:
2021-07-19
Accepted:
2021-11-23
Published:
2022-07-01
Online:
2022-07-11
Contact:
Li-Xia QIN,Xiang-Qing LI
About author:
lxqin@sit.edu.cnSupported by:
摘要:
将阳极氧化与光还原法结合,在TiO2纳米管阵列(TiO2NTAs)表面修饰Ag纳米粒子,获得一种均匀有序、稳定性高且可循环的TiO2NTAs/Ag活性基底。采用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(UV-Vis DRS)、表面增强拉曼散射光谱(SERS)和扫描电子显微镜(SEM)等手段对TiO2NTAs/Ag的组成和结构进行了表征。进一步研究了该TiO2-NTAs/Ag阵列对盐酸四环素(TC-HCl)的SERS响应,结果表明,该复合基底对TC-HCl具有较高的检测灵敏度,在水中检测限可达1×10-14 mol/L,而TiO2-NTAs与Ag之间的协同效应对其检测性能的提高起着关键作用。此外,TiO2NTAs/Ag基底在光照下对TC-HCl展示了优异的降解活性,且至少可循环使用8次。表明该TiO2NTAs/Ag基底在环境中有机污染物的SERS检测和降解领域具有潜在的应用前景。
中图分类号:
张晓丽, 彭玉美, 王庆伟, 秦利霞, 刘肖霞, 康诗钊, 李向清. 纳米Ag/TiO2纳米管阵列基底构建及表面增强拉曼散射光谱检测与降解盐酸四环素[J]. 应用化学, 2022, 39(7): 1147-1156.
Xiao-Li ZHANG, Yu-Mei PENG, Qing-Wei WANG, Li-Xia QIN, Xiao-Xia LIU, Shi-Zhao KANG, Xiang-Qing LI. Construction of Nano Ag Modified TiO2 Nanotube Array Substrate for Surface Enhanced Raman Scattering Detection and Degradation of Tetracycline Hydrochloride[J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1147-1156.
图4 (A)TiO2NTAs/Ag的XPS全谱;TiO2NTAs(a)和TiO2NTAs/Ag(b)的Ti2p(B)和O1s(C)高分辨XPS谱图;(D)TiO2NTAs/Ag的Ag3d高分辨XPS谱图
Fig.4 (A) XPS survey spectrum of TiO2NTAs/Ag; Ti2p XPS spectra (B) and O1s XPS spectra (C) of TiO2NTAs (a) and TiO2NTAs/Ag (b); (D) Ag3d XPS spectrum of TiO2NTAs/Ag
图5 (A)TiO2NTAs(a)和TiO2NTAs/Ag(b)的拉曼光谱; (B)TiO2NTAs(a)和TiO2NTAs/Ag(b)的紫外-可见漫反射光谱
Fig.5 (A) Raman spectra of TiO2NTAs (a) and TiO2NTAs/Ag (b); (B) UV-Vis diffuse reflectance spectra of TiO2NTAs (a) and TiO2NTAs/Ag (b)
图6 (A)TiO2NTAs和(B)TiO2NTAs/Ag的扫描电子显微镜照片。 (A)和(B)中的插图分别为TiO2NTAs的截面图和AgNPs的尺寸分布直方图
Fig.6 SEM images of (A) TiO2NTAs and (B) TiO2NTAs/Ag. The insets in (A) and (B): cross-section of TiO2NTAs and the size distribution histogram for AgNPs on the surface of the TiO2NTAs, respectively
图7 (A)纯TC-HCl的拉曼光谱(a)和不同浓度TC-HCl在TiO2NTAs/Ag基底上的SERS光谱: 0.05 g/L(b)、0.005 μg/L(c)、0.05 μg/L(d)、0.5 μg/L(e)、5 μg/L(g)、50 μg/L(f)、100 μg/L(h)、200 μg/L(i)、300 μg/L(j)、400 μg/L(k)和500 μg/L(l); (B)、(C)和(D)分别为不同浓度TC-HCl于920、1389和1602 cm-1处相对应的SERS强度的散点图
Fig.7 (A) Raman spectra of pure TC-HCl (a) and SERS spectra of the TC-HCl with different concentrations using TiO2NTAs/Ag as SERS substrate: 0.05 g/L (b),0.005 μg/L (c),0.05 μg/L (d),0.5 μg/L (e),5 μg/L (g),50 μg/L (f),100 μg/L (h),200 μg/L (i),300 μg/L (j),400 μg/L (k) and 500 μg/L (l), respectively; (B), (C) and (D) Plots of the intensity of the Raman bands at 920, 1389 and 1602 cm-1 against the different concentration (c — l) of TC-HCl, respectively
材料 Materials | 检测限 LOD/(mol?L-1) | 参考文献Ref. |
---|---|---|
Fe3O4@PEI@AgNPs | 1 × 10-8 | [ |
Silver colloid | 1 × 10-11 | [ |
Chitosan/gold NPs/graphene oxide | 1 × 10-10 | [ |
TiO2NTAs/Ag | 1 × 10-14 | This work |
表1 相关基底对TH?HCl SERS检测限比较表
Table 1 Comparison of the LOD for SERS detection TC?HCl on some substrates
材料 Materials | 检测限 LOD/(mol?L-1) | 参考文献Ref. |
---|---|---|
Fe3O4@PEI@AgNPs | 1 × 10-8 | [ |
Silver colloid | 1 × 10-11 | [ |
Chitosan/gold NPs/graphene oxide | 1 × 10-10 | [ |
TiO2NTAs/Ag | 1 × 10-14 | This work |
图8 (A)50 mg/L TC-HCl 在TiO2NTAs/Ag基底表面的SERS光谱(a)和将此滴加TC-HCl的基底放置30 d后的SERS光谱图(b); (B)TiO2NTAs/Ag的8次SERS循环,目标分子为50 mg/L的TC-HCl
Fig.8 (A) SERS spectra of 50 mg/L TC-HCl on TiO2NTAs/Ag(a) and SERS spectra of the sample after being placed for 30 days (b); (B) SERS cycles of the TiO2NTAs/Ag, and the target molecule is 50 mg/L TC-HCl
图9 50 mg/L TC-HCl水溶液(a)和稀释牛奶(b)的SERS光谱; 不同浓度的TC-HCl+稀释牛奶混合液的SERS光谱:100 (c)、200 (d)、300 (e)、400 (f)和500 μg/L(g)。 SERS光谱均在TiO2NTAs/Ag基底上检测
Fig.9 SERS spectra of 50 mg/L TC-HCl aqueous solution (a), diluted milk (b) and diluted milk+TC-HCl at different concentration levels: 100 (c), 200 (d), 300 (e), 400 (f) and 500 μg/L (g), respectively. SERS spectra are detected on the TiO2NTAs/Ag SERS substrate
图10 TC-HCl的光催化降解效率曲线; TiO2NTAs和TiO2NTAs/Ag的面积均为1.0 cm × 1.0 cm (盐酸四环素的初始浓度为0.1 μmol/L)
Fig.10 Photocatalytic degradation efficiency for TC-HCl. The areas of TiO2NTAs and TiO2NTAs/Ag are 1.0 cm × 1.0 cm (the initial concentration of TH-HCl is 0.1 μmol/L)
1 | 朱越洲, 张月皎, 李剑锋, 等. 表面增强拉曼光谱:应用和发展[J]. 应用化学, 2018, 35(9): 984-992. |
ZHU Y Z, ZHANG Y J, LI J F, et al. Surface-enhanced Raman spectroscopy: applications and perspectives[J]. Chinese J Appl Chem, 2018, 35(9): 984-992. | |
2 | LAFUENTE M, PELLEJERO I, CLMENTE A, et al. In situ synthesis of SERS-active Au@POM nanostructures in a microfluidic device for real-time detection of water pollutants[J]. ACS Appl Mater Interfaces, 2020, 12(32): 36458-36467 |
3 | 寇书芳, 封振宇, 王春省, 等. 金@氧缺陷二氧化钛核壳纳米颗粒的制备及光催化产氢[J].无机化学学报, 2017, 33(8): 1390- 1396. |
KOU S F, FENG Z Y, WANG C S, et al. Facile synthesis of core-shell Au@H-TiO2 nanoparticles for photocatalytic hydrogen-generation[J]. Chinese J Inorg Chem, 2017, 33(8): 1390-1396. | |
4 | YU W B, DONG W D, LI C F, et al. Interwoven scaffolded porous titanium oxide nanocubes/carbon nanotubes framework for high-performance sodium-ion battery[J]. J Energy Chem, 2021, 59: 38-46. |
5 | LI X H, CHEN G Y, YANG L B, et al. Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection[J]. Adv Funct Mater, 2010, 20(17): 2815-2824. |
6 | 张萌, 陈东圳, 任研伟, 等. 纳米岛状银膜@金纳米针尖表面增强拉曼散射传感界面及多巴胺分子的传感分析[J]. 应用化学, 2021, 38(7): 866-873. |
ZHANG M, CHEN D Z, REN Y W, et al. Sensing interface based on nanoislandlike sliver film@gold nanotip for surface enhanced Raman scattering analysis of dopamine[J]. Chinese J Appl Chem, 2021, 38(7): 866-873. | |
7 | SUN Y Y, YANG L L, LIAO F, et al. Parameter optimization for Ag-coated TiO2 nanotube arrays as recyclable SERS substrates[J]. Appl Surf Sci, 2018, 443: 613-618. |
8 | LING Y H, ZHUO Y Q, HUANG L, et al. Using Ag-embedded TiO2 nanotubes array as recyclable SERS substrate[J]. Appl Surf Sci, 2016, 388: 169-173. |
9 | 刘景亮, 郑寿荣, 许昭怡. 四环素在CuY分子筛上的吸附行为研究[J]. 无机化学学报, 2012, 28(3): 453-458. |
LIU J L, ZHENG S R, XU Z Y.Adsorption of tetracycline on Cu exchanged Y-zeolite[J]. Chinese J Inorg Chem,2012, 28(3): 453- 458. | |
10 | AYLAZ G, OKAN M, DUMAN M, et al. Study on cost-efficient carbon aerogel to remove antibiotics from water resources[J]. ACS Omega,2020, 5(27): 16635-16644. |
11 | CHENG X W, CHENG Q F, DENG X Y, et al. A facile and novel strategy to synthesize reduced TiO2 nanotubes photoelectrode for photoelectrocatalytic degradation of diclofenac[J]. Chemosphere, 2016, 144: 888-894. |
12 | VACCA A, MAIS L, MASCIA M, et al. Mechanistic insights into 2,4-D photoelectrocatalytic removal from water with TiO2 nanotubes under dark and solar light irradiation[J]. J Hazard Mater, 2021, 412: 125202-125211. |
13 | BHATTACHARYYA D, SARSWAT P K, ISLAM M, et al. Geometrical modifications and tuning of optical and surface plasmon resonance behaviour of Au and Ag coated TiO2 nanotubular arrays[J]. RSC Adv, 2015, 5(86): 70361-70370. |
14 | GE M Z, CAO C Y, LI S H, et al. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting[J]. Nanoscale, 2016, 8(9): 5226-5234. |
15 | LOW J X, QIU S Q, XU D F, et al.Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction[J]. Appl Surf Sci, 2018, 434: 423-432. |
16 | YAO X X, ZHANG W J, HUANG J L, et al. Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C3N4 nanosheets by one-step in‑situ decomposition-thermal polymerization method[J]. Appl Catal A,2020, 601: 117647-117653. |
17 | ISARIA A, PAYAN A, FATTAHI M, et al. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): characterization and feasibility, mechanism and pathway studies[J]. Appl Surf Sci, 2018, 462: 549-564. |
18 | JI Y J. Growth mechanism and photocatalytic performance of double-walled and bamboo-type TiO2 nanotube arrays[J]. RSC Adv, 2014, 4(76): 40474-40481. |
19 | ZHANG Z Y, FU J J, CAI J S, et al. Heterostructured ternary In2O3-Ag-TiO2 nanotube arrays for simulated sunlight-driven photoelectrocatalytic hydrogen generation[J].ChemElectroChem, 2021, 8(3): 577-584. |
20 | ZHANG Y H, LI Q, GAO Q, et al. Preparation of Ag/β-cyclodextrin co-doped TiO2 floating photocatalytic membrane for dynamic adsorption and photoactivity under visible light[J]. Appl Catal B: Environ, 2020, 267: 118715-118726. |
21 | YAMAMOTO N, YOSHIDA T, YAGI S, et al. The influence of the preparing method of a Ag/Ga2O3 catalyst on its activity for photocatalytic reduction of CO2 with water[J]. J Surf Sci Nanotechnol, 2014, 12: 263-268. |
22 | DHAKAL S, CHAO K L, HUANG Q, et al. A simple surface-enhanced Raman spectroscopic method for on-site screening of tetracycline residue in whole milk[J]. Sensors, 2018, 18(2): 424-436. |
23 | QU L L, LIU Y Y, LIU M K, et al. Highly reproducible AgNPs/CNT-intercalated GO membranes for enrichment and SERS detection of antibiotics[J]. ACS Appl Mater Inter, 2016, 8(41): 28180-28186. |
24 | FILGUEIRAS A L, PASCHOAL D, DOS SANTOS H F, et al. Adsorption study of antibiotics on silver nanoparticle surfaces by surface-enhanced Raman scattering spectroscopy[J]. Spectrochim Acta Part A, 2015, 136: 979-985. |
25 | ZHAO J H, LIU P, YUAN H C, et al. Rapid detection of tetracycline residues in duck meat using surface enhanced Raman spectroscopy[J]. J Spectrosc, 2016, 2: 1-6. |
26 | JIN D, BAI Y X, CHEN H G, et al. SERS detection of expired tetracycline hydrochloride with an optical fiber nano-probe[J]. Anal Methods, 2015, 7(4): 1307-1312. |
27 | ZHANG Y, WANG Z W, ZHANG Q, et al. Polyethyleneimine mediated interaction for highly sensitive, magnetically assisted detection of tetracycline hydrochloride[J]. Appl Surf Sci,2020, 505: 144543-144551. |
28 | JONES S, PRAMANIKk A, KANCHANAPALLY R, et al. Multifunctional three-dimensional chitosan/gold nanoparticle/graphene oxide architecture for separation, label-free SERS identification of pharmaceutical contaminants, and effective killing of superbugs[J]. ACS Sustainable Chem Eng, 2017, 5(8): 7175-7187. |
29 | LOW J X, QIU S Q, XU D F, et al. Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction[J]. Appl Surf Sci, 2018, 434: 423-432. |
30 | TANG D D, ZHANG G K. Ultrasonic-assistant fabrication of cocoon-like Ag/AgFeO2 nanocatalysts with excellent plasmon enhanced visible-light photocatalytic activity[J]. Ultrason Sonochem, 2017, 37: 208-215. |
31 | LI X, JIN Y C, DOU Z X, et al. Rational design of Z-scheme Bi12O17Cl2/plasmonic Ag/anoxic TiO2 composites for efficient visible light photocatalysis[J]. Powder Technol, 2021, 384: 342-352. |
[1] | 刘盛杰, 叶永杰, 刘银怡, 林淑满, 谢浩源, 刘文婷, 许伟钦. 基于泡沫铜的多孔碳均匀负载Cu3P纳米颗粒的制备及其光催化降解染料性能[J]. 应用化学, 2022, 39(7): 1090-1097. |
[2] | 徐一鑫, 王爽, 全静, 高婉婷, 宋天群, 杨梅. 二硫化钼量子点/还原氧化石墨烯复合材料的制备及其光催化降解有机染料、四环素和Cr(VI)[J]. 应用化学, 2022, 39(5): 769-778. |
[3] | 赵星鹏, 王娅乔, 高生旺, 朱建超王国英, 夏训峰, 王洪良, 王书平. BiOBr/CeO2复合材料的制备及光催化降解磺胺异恶唑[J]. 应用化学, 2021, 38(4): 422-430. |
[4] | 霍朝晖, 杨晓珊, 陈晓丽, 张刚, 尹伟, 曹曼丽, 史蕾, 邱燕璇. 纳米银/二维石墨相氮化碳/还原氧化石墨烯复合材料的制备及其光催化降解抗生素[J]. 应用化学, 2020, 37(4): 471-480. |
[5] | 黑嘉慧, 杨莉宁, 李珺. 噻吩醛缩乙二胺席夫碱及其配合物的合成与光催化性能[J]. 应用化学, 2019, 36(8): 949-957. |
[6] | 李进, 冯勋, 郭辉. 纳米棒组装的WO3·0.33H2O及其光催化性能改善[J]. 应用化学, 2017, 34(1): 60-70. |
[7] | 李进, 冯勋, 郭辉. 纳米棒组装的WO3·0.33H2O及其光催化性能改善[J]. 应用化学, 2017, 34(1): 0-0. |
[8] | 刘玉婷, 陈彦安, 邢彦军. 季膦-磷钨酸室温离子液体的合成及光催化降解罗丹明B[J]. 应用化学, 2014, 31(04): 431-436. |
[9] | 叶林静, 关卫省, 宋优男, 杨莉. 磁性Fe3O4/ZnO核壳材料的制备及降解四环素类抗生素[J]. 应用化学, 2013, 30(09): 1023-1029. |
[10] | 邓玲娟, 古元梓, 徐维霞, 马占营. 二氧化钛-石墨烯复合物的制备及其光催化性质[J]. 应用化学, 2012, 29(08): 942-947. |
[11] | 张峰, 张恒, 朱万诚, 李言信, 赵斌. 铁柱撑膨润土的微波合成及对甲基橙的光催化氧化降解作用[J]. 应用化学, 2012, 29(06): 668-673. |
[12] | 孟丹, 王和义, 刘秀华, 丁兰岚. Fe掺杂对纳米TiO2薄膜的结构与光催化性能的影响[J]. 应用化学, 2011, 28(12): 1379-1386. |
[13] | 敏世雄, 王芳, 魏立强, 王永生, 安红钢, 吴冬青. Fe3+掺杂TiO2/凹凸棒复合光催化剂的制备和光催化活性[J]. 应用化学, 2010, 27(06): 700-704. |
[14] | 邓玲娟, 黄方千, 高丰琴, 杨阳, 杨改秀, 陆天虹. ZnS光催化剂对不同偶氮类染料光降解的光催化性能的比较[J]. 应用化学, 2010, 27(06): 705-709. |
[15] | 万斌, 沈嘉年, 陈鸣波, 王东, 张新荣, 李谋成. 阳极氧化法制备TiO2纳米管及光催化性能[J]. 应用化学, 2008, 25(6): 665-668. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||