
应用化学 ›› 2022, Vol. 39 ›› Issue (5): 769-778.DOI: 10.19894/j.issn.1000-0518.210115
收稿日期:
2021-03-15
接受日期:
2021-08-28
出版日期:
2022-05-01
发布日期:
2022-05-24
通讯作者:
杨梅
基金资助:
Yi-Xin XU, Shuang WANG, Jing QUAN, Wan-Ting GAO, Tian-Qun SONG, Mei YANG()
Received:
2021-03-15
Accepted:
2021-08-28
Published:
2022-05-01
Online:
2022-05-24
Contact:
Mei YANG
About author:
yangmeils@163.comSupported by:
摘要:
以钼酸钠、L-半胱氨酸和氧化石墨烯为原料,采用一锅溶剂热还原法制备了二硫化钼量子点/还原氧化石墨烯(MoS2 QDs/rGO)复合材料,分别以罗丹明B、亚甲基蓝、四环素和Cr(VI)为目标污染物,研究了复合材料的可见光响应光催化降解性能。结果显示,MoS2 QDs/rGO对两种染料和Cr(VI)的光催化降解率均可达97%以上,对四环素的光催化降解率为69%;循环使用10次,对目标染料的降解率均保持在90%以上。说明MoS2 QDs/rGO具有良好的催化活性和稳定性。在降解体系中分别加入异丙醇、对苯醌和乙二胺四乙酸二钠捕获剂,结果显示,超氧自由基(?O2-)是MoS2 QDs/rGO光催化反应的主要活性物种。
中图分类号:
徐一鑫, 王爽, 全静, 高婉婷, 宋天群, 杨梅. 二硫化钼量子点/还原氧化石墨烯复合材料的制备及其光催化降解有机染料、四环素和Cr(VI)[J]. 应用化学, 2022, 39(5): 769-778.
Yi-Xin XU, Shuang WANG, Jing QUAN, Wan-Ting GAO, Tian-Qun SONG, Mei YANG. Preparation of Molybdenum Disulfide Quantum Dots/Reduced Graphene Oxide Composites and Their Photocatalytic Degradation of Organic Dyes, Tetracyclines and Cr(VI)[J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 769-778.
图6 MoS2 QDs/rGO、MoS2和rGO分别对RhB (A)、MB (B)、TC (C)和Cr(Ⅵ) (D)的光催化降解曲线
Fig.6 Photocatalytic degradation curves of RhB (A), MB (B), TC(C) and Cr(Ⅵ)(D) by MoS2 QDs/rGO, MoS2 and rGO
图7 MoS2 QDs/rGO用量(A - D)和pH(E - H)分别对RhB、MB、TC和Cr(Ⅵ)光催化降解的影响
Fig.7 Photocatalytic degradation of RhB, MB, TC and Cr(Ⅵ) with different amount of MoS2 QDs/rGO (A - D) and at different reaction system pH values (E - H)
图8 MoS2 QDs/rGO对RhB和MB (A), TC和Cr(Ⅵ) (B)的光催化降解率随循环使用次数的变化
Fig.8 Photocatalytic degradation of RhB and MB (A), TC and Cr(Ⅵ) (B) with MoS2 QDs/rGO as a function of cycling times
目标污染物 Samples | 动力学反应级数 Reaction order | 回归方程 Regression equation | 相关系数 r |
---|---|---|---|
0 | ρt =-0.0118t+0.936 | 0.981 | |
RhB | 1 | ln ρt =-0.0320t+0.163 | 0.990 |
2 | 1/ρt =0.136t-0.794 | 0.903 | |
0 | ρt =-0.0119t+0.872 | 0.950 | |
MB | 1 | ln ρt =-0.0387t+0.104 | 0.997 |
2 | 1/ρt =0.231t-1.91 | 0.925 | |
0 | ρt =-0.0062t+0.766 | 0.976 | |
TC | 1 | ln ρt =-0.0119t-0.236 | 0.997 |
2 | 1/ρt =0.0246t+1.17 | 0.995 | |
0 | ρt =-0.0088t+0.656 | 0.958 | |
Cr(Ⅵ) | 1 | ln ρt =-0.0372t-0.178 | 0.996 |
2 | 1/ρt =0.281t-2.30 | 0.910 |
表1 RhB、MB、TC和Cr(Ⅵ)的光催化降解动力学拟合
Table 1 The photocatalytic degradation kinetics of RhB, MB, TC and Cr(Ⅵ)
目标污染物 Samples | 动力学反应级数 Reaction order | 回归方程 Regression equation | 相关系数 r |
---|---|---|---|
0 | ρt =-0.0118t+0.936 | 0.981 | |
RhB | 1 | ln ρt =-0.0320t+0.163 | 0.990 |
2 | 1/ρt =0.136t-0.794 | 0.903 | |
0 | ρt =-0.0119t+0.872 | 0.950 | |
MB | 1 | ln ρt =-0.0387t+0.104 | 0.997 |
2 | 1/ρt =0.231t-1.91 | 0.925 | |
0 | ρt =-0.0062t+0.766 | 0.976 | |
TC | 1 | ln ρt =-0.0119t-0.236 | 0.997 |
2 | 1/ρt =0.0246t+1.17 | 0.995 | |
0 | ρt =-0.0088t+0.656 | 0.958 | |
Cr(Ⅵ) | 1 | ln ρt =-0.0372t-0.178 | 0.996 |
2 | 1/ρt =0.281t-2.30 | 0.910 |
1 | ANWER H, MAHMOOD A, LEE J, et al. Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges[J]. Nano Res, 2019,12(5): 955-972. |
2 | 韦之栋, 刘军营, 上官文峰. 抗生素废水中的光催化:污染物降解和产氢综述[J]. 催化学报, 2020, 41(10): 1440-1450. |
WEI Z D, LIU J Y, SHANGGUAN W F. A review on photocatalysis in antibiotic wastewater: pollutant degradation and hydrogen production[J].Chinese J Catal, 2020,41(10): 1440-1450. | |
3 | CHEN Z T, LIU Y Y, ZHANG W J, et al. Fabrication of multilayered MoS2 coated raspberry‑like TiO2 on rGO with enhanced photocatalytic reduction of Cr(VI)[J]. J Mater Sci: Mater Electron, 2019, 30: 12901-12910. |
4 | 唐飞, 杜多勤, 谭云妃, 等. 正六棱型MoO3- x微米柱光催化剂的制备及性能[J]. 应用化学, 2021, 38(1): 92-98. |
TANG F, DU D Q, TAN Y F, et al. Preparation and characterization of MoO3- x hexagonal microrods as high-efficiency photocatalysts[J]. Chinese J Appl Chem, 2021, 38(1): 92-98. | |
5 | 马贺成, 刘建军, 于迎春, 等. 二维石墨相氮化碳纳米片的制备及其在光催化领域的研究进展[J]. 应用化学, 2019, 36(3): 259-268. |
MA H C, LIU J J, YU Y C, et al. Research progress in preparation and photocatalysis of two-dimensional graphitic carbon nitride nanosheets[J]. Chinese J Appl Chem, 2019, 36(3): 259-268. | |
6 | 张春华, 赵晓波, 李跃军, 等. (BiO)2CO3-Bi-TiO2复合纳米纤维制备及其光催化降解抗生素[J]. 应用化学, 2021, 38(1): 99-106. |
ZHANG C H, ZHAO X B, LI Y J, et al. Preparation of (BiO)2CO3-Bi-TiO2 composite nanofibers and its photocatalytic degradation of antibiotics[J]. Chinese J Appl Chem, 2021, 38(1): 99-106. | |
7 | WU M H, LI L, LIU N, et al. Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: a review[J]. Process Saf Environ, 2018, 118: 40-58. |
8 | ARUL N S, NITHYA V D. Molybdenum disulfide quantum dots: synthesis and applications[J]. RSC Adv, 2016, 6(70): 65670-65682. |
9 | CHANG K, MEI Z W, WANG T, et al. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation[J].ACS Nano,2014, 8(7): 7078-7087. |
10 | GAO W Y, WANG M Q, RAN C X, et al. Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties[J]. Chem Commun, 2015, 51(9): 1709-1712. |
11 | CUI Y, ZHANG R, ZHANG J, et al. Highly active and stable electrocatalytic hydrogen evolution catalyzed by nickel, iron doped cobalt disulfide@reduced graphene oxide nanohybrid electrocatalysts[J]. Mater Today Energy, 2018, 7: 44-50 |
12 | HOSSEINI S A, BABAEI S. Graphene oxide/zinc oxide (GO/ZnO) nanocomposite as a superior photocatalyst for degradation of methylene blue (MB)-process modeling by response surface methodology (RSM)[J]. J Brazil Chem Soc, 2017, 28(2): 299-307. |
13 | 孙彤. 氧化石墨烯的合成、表征、功能化及其与生物大分子相互作用和生物相容性研究[D]. 大连: 辽宁师范大学, 2013. |
SUN T. The Synthesis, characterization, functionalization of graphene oxide and its interaction with biomoleculars and biocompatibility[D]. Dalian: Liaoning Normal Univerisity, 2013. | |
14 | 张云, 陈晓燕. 地表水环境中六价铬的测定研究[J]. 应用化工, 2012, 41(2): 349-351. |
ZHANG Y, CHEN X Y. Research on determination of chromium(Ⅵ) in surface water environment[J]. Appl Chem Ind, 2012, 41(2): 349-351. | |
15 | XU S J, LI D, D. WU P Y. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction[J]. Adv Funct Mater, 2015, 25(7): 1127-1136. |
16 | SABEEH H, ZULFIQAR S, AADIL M, et al. Flake-like MoS2 nano-architecture and its nanocomposite with reduced graphene oxide for hybrid supercapacitors applications[J]. Ceram Int, 2020, 46(13): 21064-21072. |
17 | LI X, ZHANG C F, XIN S, et al. Facile synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors[J]. ACS Appl Mater Interfaces, 2016, 8(33): 21373-21380. |
18 | GEBREEGZIABHER G, ASEMAHEGNE A, AYELE D M, et al. One-step synthesis and characterization of reduced graphene oxide using chemical exfoliation method[J]. Mater Today Chem, 2019, 12: 233-239. |
19 | GU W, YAN Y H, CAO X N, et al. A facile and one-step ethanol-thermal synthesis of MoS2 quantum dots for two-photon fluorescence imaging[J]. J Mater Chem B, 2016, 4(1): 27-31. |
20 | QURESHI T S. PANESAR D K. Impact of graphene oxide and highly reduced graphene oxide on cement based composites[J]. Constr Build Mater, 2019, 206: 71-83. |
21 | KAVINKUMAR T, VARUNKUMAR K, RAVIKUMAR V, et al. Anticancer activity of graphene oxide-reduced graphene oxide-silver nanoparticle composites[J]. J Colloid Interface Sci, 2017, 505: 1125-1133 |
22 | WU M H, LI L, XUE Y C, et al. Fabrication of ternary GO/g-C3N4/MoS2 flower-like heterojunctions with enhanced photocatalytic activity for water remediation[J]. Appl Catal B: Environ, 2018, 228: 103-112. |
23 | PERREAULT F, DE FARIA A F, ELIMELECH M. Environmental applications of graphene-based nanomaterials[J]. Chem Soc Rev, 2015, 44(16): 5861-5896. |
24 | OYETADE O A, NYAMORI V O, MARTINCIGH B S, et al. Effectiveness of carbon nanotube-cobalt ferrite nanocomposites for the adsorption of rhodamine B from aqueous solutions[J]. RSC Adv, 2015, 5(29): 22724-22739. |
25 | GOPALAKRISHNAN A, SINGH S P, BADHULIKA S. Reusable, few-layered-MoS2 nanosheets/grapheme hybrid on cellulose paper for superior adsorption of methylene blue dye[J]. New J Chem, 2020, 44(14): 5489-5500. |
26 | LI Y, LIU Z M, WU Y C, et al. Carbon dots-TiO2 nanosheets composites for photoreduction of Cr(VI) under sunlight illumination: favorable role of carbon dots[J]. Appl Catal B: Environ, 2018, 224: 508-517. |
27 | REN Z X, LIU X J, CHU H P, et al. Carbon quantum dots decorated MoSe2 photocatalyst for Cr(VI) reduction in the UV-Vis-NIR photon energy range[J]. J Colloid Interface Sci, 2017, 488: 190-195. |
28 | NIE Y C, YU F, WANG L C, et al. Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: performance and mechanism[J]. Appl Catal B: Environ, 2018, 227: 312-321. |
29 | REN Z Q, CHEN F Y, WEN K X, et al. Enhanced photocatalytic activity for tetracyclines degradation with Ag modified g-C3N4 composite under visible light[J]. J Photochem Photobiol A, 2020, 389: 112217. |
30 | LI J L, LIU X J, PAN L K, et al. MoS2-reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue[J]. RSC Adv, 2014, 4(19): 9647-9651. |
31 | ZHANG S Q, WANG L L, LIU C B,et al. Photocatalytic wastewater purification with simultaneous hydrogen production using MoS2 QDs-decorated hierarchical assembly of ZnIn2S4 on reduced graphene oxide photocatalyst[J]. Water Res,2017, 121: 11-19. |
32 | HU X F, JI H H, CHANG F, et al. Simultaneous photocatalytic Cr(VI) reduction and 2,4,6-TCP oxidation over g-C3N4 under visible light irradiation[J]. Catal Today, 2014, 224: 34-40. |
33 | HU X J, WANG W X, XIE G Y, et al. Ternary assembly of g-C3N4/graphene oxide sheets/BiFeO3 heterojunction with enhanced photoreduction of Cr(VI) under visible-light irradiation[J].Chemosphere, 2019,216: 733-741. |
[1] | 刘盛杰, 叶永杰, 刘银怡, 林淑满, 谢浩源, 刘文婷, 许伟钦. 基于泡沫铜的多孔碳均匀负载Cu3P纳米颗粒的制备及其光催化降解染料性能[J]. 应用化学, 2022, 39(7): 1090-1097. |
[2] | 张晓丽, 彭玉美, 王庆伟, 秦利霞, 刘肖霞, 康诗钊, 李向清. 纳米Ag/TiO2纳米管阵列基底构建及表面增强拉曼散射光谱检测与降解盐酸四环素[J]. 应用化学, 2022, 39(7): 1147-1156. |
[3] | 赵星鹏, 王娅乔, 高生旺, 朱建超王国英, 夏训峰, 王洪良, 王书平. BiOBr/CeO2复合材料的制备及光催化降解磺胺异恶唑[J]. 应用化学, 2021, 38(4): 422-430. |
[4] | 霍朝晖, 杨晓珊, 陈晓丽, 张刚, 尹伟, 曹曼丽, 史蕾, 邱燕璇. 纳米银/二维石墨相氮化碳/还原氧化石墨烯复合材料的制备及其光催化降解抗生素[J]. 应用化学, 2020, 37(4): 471-480. |
[5] | 黑嘉慧, 杨莉宁, 李珺. 噻吩醛缩乙二胺席夫碱及其配合物的合成与光催化性能[J]. 应用化学, 2019, 36(8): 949-957. |
[6] | 李进, 冯勋, 郭辉. 纳米棒组装的WO3·0.33H2O及其光催化性能改善[J]. 应用化学, 2017, 34(1): 60-70. |
[7] | 李进, 冯勋, 郭辉. 纳米棒组装的WO3·0.33H2O及其光催化性能改善[J]. 应用化学, 2017, 34(1): 0-0. |
[8] | 刘玉婷, 陈彦安, 邢彦军. 季膦-磷钨酸室温离子液体的合成及光催化降解罗丹明B[J]. 应用化学, 2014, 31(04): 431-436. |
[9] | 叶林静, 关卫省, 宋优男, 杨莉. 磁性Fe3O4/ZnO核壳材料的制备及降解四环素类抗生素[J]. 应用化学, 2013, 30(09): 1023-1029. |
[10] | 邓玲娟, 古元梓, 徐维霞, 马占营. 二氧化钛-石墨烯复合物的制备及其光催化性质[J]. 应用化学, 2012, 29(08): 942-947. |
[11] | 张峰, 张恒, 朱万诚, 李言信, 赵斌. 铁柱撑膨润土的微波合成及对甲基橙的光催化氧化降解作用[J]. 应用化学, 2012, 29(06): 668-673. |
[12] | 孟丹, 王和义, 刘秀华, 丁兰岚. Fe掺杂对纳米TiO2薄膜的结构与光催化性能的影响[J]. 应用化学, 2011, 28(12): 1379-1386. |
[13] | 敏世雄, 王芳, 魏立强, 王永生, 安红钢, 吴冬青. Fe3+掺杂TiO2/凹凸棒复合光催化剂的制备和光催化活性[J]. 应用化学, 2010, 27(06): 700-704. |
[14] | 邓玲娟, 黄方千, 高丰琴, 杨阳, 杨改秀, 陆天虹. ZnS光催化剂对不同偶氮类染料光降解的光催化性能的比较[J]. 应用化学, 2010, 27(06): 705-709. |
[15] | 万斌, 沈嘉年, 陈鸣波, 王东, 张新荣, 李谋成. 阳极氧化法制备TiO2纳米管及光催化性能[J]. 应用化学, 2008, 25(6): 665-668. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2624
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 591
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||