1 |
ANWER H, MAHMOOD A, LEE J, et al. Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges[J]. Nano Res, 2019,12(5): 955-972.
|
2 |
韦之栋, 刘军营, 上官文峰. 抗生素废水中的光催化:污染物降解和产氢综述[J]. 催化学报, 2020, 41(10): 1440-1450.
|
|
WEI Z D, LIU J Y, SHANGGUAN W F. A review on photocatalysis in antibiotic wastewater: pollutant degradation and hydrogen production[J].Chinese J Catal, 2020,41(10): 1440-1450.
|
3 |
CHEN Z T, LIU Y Y, ZHANG W J, et al. Fabrication of multilayered MoS2 coated raspberry‑like TiO2 on rGO with enhanced photocatalytic reduction of Cr(VI)[J]. J Mater Sci: Mater Electron, 2019, 30: 12901-12910.
|
4 |
唐飞, 杜多勤, 谭云妃, 等. 正六棱型MoO3- x微米柱光催化剂的制备及性能[J]. 应用化学, 2021, 38(1): 92-98.
|
|
TANG F, DU D Q, TAN Y F, et al. Preparation and characterization of MoO3- x hexagonal microrods as high-efficiency photocatalysts[J]. Chinese J Appl Chem, 2021, 38(1): 92-98.
|
5 |
马贺成, 刘建军, 于迎春, 等. 二维石墨相氮化碳纳米片的制备及其在光催化领域的研究进展[J]. 应用化学, 2019, 36(3): 259-268.
|
|
MA H C, LIU J J, YU Y C, et al. Research progress in preparation and photocatalysis of two-dimensional graphitic carbon nitride nanosheets[J]. Chinese J Appl Chem, 2019, 36(3): 259-268.
|
6 |
张春华, 赵晓波, 李跃军, 等. (BiO)2CO3-Bi-TiO2复合纳米纤维制备及其光催化降解抗生素[J]. 应用化学, 2021, 38(1): 99-106.
|
|
ZHANG C H, ZHAO X B, LI Y J, et al. Preparation of (BiO)2CO3-Bi-TiO2 composite nanofibers and its photocatalytic degradation of antibiotics[J]. Chinese J Appl Chem, 2021, 38(1): 99-106.
|
7 |
WU M H, LI L, LIU N, et al. Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: a review[J]. Process Saf Environ, 2018, 118: 40-58.
|
8 |
ARUL N S, NITHYA V D. Molybdenum disulfide quantum dots: synthesis and applications[J]. RSC Adv, 2016, 6(70): 65670-65682.
|
9 |
CHANG K, MEI Z W, WANG T, et al. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation[J].ACS Nano,2014, 8(7): 7078-7087.
|
10 |
GAO W Y, WANG M Q, RAN C X, et al. Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties[J]. Chem Commun, 2015, 51(9): 1709-1712.
|
11 |
CUI Y, ZHANG R, ZHANG J, et al. Highly active and stable electrocatalytic hydrogen evolution catalyzed by nickel, iron doped cobalt disulfide@reduced graphene oxide nanohybrid electrocatalysts[J]. Mater Today Energy, 2018, 7: 44-50
|
12 |
HOSSEINI S A, BABAEI S. Graphene oxide/zinc oxide (GO/ZnO) nanocomposite as a superior photocatalyst for degradation of methylene blue (MB)-process modeling by response surface methodology (RSM)[J]. J Brazil Chem Soc, 2017, 28(2): 299-307.
|
13 |
孙彤. 氧化石墨烯的合成、表征、功能化及其与生物大分子相互作用和生物相容性研究[D]. 大连: 辽宁师范大学, 2013.
|
|
SUN T. The Synthesis, characterization, functionalization of graphene oxide and its interaction with biomoleculars and biocompatibility[D]. Dalian: Liaoning Normal Univerisity, 2013.
|
14 |
张云, 陈晓燕. 地表水环境中六价铬的测定研究[J]. 应用化工, 2012, 41(2): 349-351.
|
|
ZHANG Y, CHEN X Y. Research on determination of chromium(Ⅵ) in surface water environment[J]. Appl Chem Ind, 2012, 41(2): 349-351.
|
15 |
XU S J, LI D, D. WU P Y. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction[J]. Adv Funct Mater, 2015, 25(7): 1127-1136.
|
16 |
SABEEH H, ZULFIQAR S, AADIL M, et al. Flake-like MoS2 nano-architecture and its nanocomposite with reduced graphene oxide for hybrid supercapacitors applications[J]. Ceram Int, 2020, 46(13): 21064-21072.
|
17 |
LI X, ZHANG C F, XIN S, et al. Facile synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors[J]. ACS Appl Mater Interfaces, 2016, 8(33): 21373-21380.
|
18 |
GEBREEGZIABHER G, ASEMAHEGNE A, AYELE D M, et al. One-step synthesis and characterization of reduced graphene oxide using chemical exfoliation method[J]. Mater Today Chem, 2019, 12: 233-239.
|
19 |
GU W, YAN Y H, CAO X N, et al. A facile and one-step ethanol-thermal synthesis of MoS2 quantum dots for two-photon fluorescence imaging[J]. J Mater Chem B, 2016, 4(1): 27-31.
|
20 |
QURESHI T S. PANESAR D K. Impact of graphene oxide and highly reduced graphene oxide on cement based composites[J]. Constr Build Mater, 2019, 206: 71-83.
|
21 |
KAVINKUMAR T, VARUNKUMAR K, RAVIKUMAR V, et al. Anticancer activity of graphene oxide-reduced graphene oxide-silver nanoparticle composites[J]. J Colloid Interface Sci, 2017, 505: 1125-1133
|
22 |
WU M H, LI L, XUE Y C, et al. Fabrication of ternary GO/g-C3N4/MoS2 flower-like heterojunctions with enhanced photocatalytic activity for water remediation[J]. Appl Catal B: Environ, 2018, 228: 103-112.
|
23 |
PERREAULT F, DE FARIA A F, ELIMELECH M. Environmental applications of graphene-based nanomaterials[J]. Chem Soc Rev, 2015, 44(16): 5861-5896.
|
24 |
OYETADE O A, NYAMORI V O, MARTINCIGH B S, et al. Effectiveness of carbon nanotube-cobalt ferrite nanocomposites for the adsorption of rhodamine B from aqueous solutions[J]. RSC Adv, 2015, 5(29): 22724-22739.
|
25 |
GOPALAKRISHNAN A, SINGH S P, BADHULIKA S. Reusable, few-layered-MoS2 nanosheets/grapheme hybrid on cellulose paper for superior adsorption of methylene blue dye[J]. New J Chem, 2020, 44(14): 5489-5500.
|
26 |
LI Y, LIU Z M, WU Y C, et al. Carbon dots-TiO2 nanosheets composites for photoreduction of Cr(VI) under sunlight illumination: favorable role of carbon dots[J]. Appl Catal B: Environ, 2018, 224: 508-517.
|
27 |
REN Z X, LIU X J, CHU H P, et al. Carbon quantum dots decorated MoSe2 photocatalyst for Cr(VI) reduction in the UV-Vis-NIR photon energy range[J]. J Colloid Interface Sci, 2017, 488: 190-195.
|
28 |
NIE Y C, YU F, WANG L C, et al. Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: performance and mechanism[J]. Appl Catal B: Environ, 2018, 227: 312-321.
|
29 |
REN Z Q, CHEN F Y, WEN K X, et al. Enhanced photocatalytic activity for tetracyclines degradation with Ag modified g-C3N4 composite under visible light[J]. J Photochem Photobiol A, 2020, 389: 112217.
|
30 |
LI J L, LIU X J, PAN L K, et al. MoS2-reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue[J]. RSC Adv, 2014, 4(19): 9647-9651.
|
31 |
ZHANG S Q, WANG L L, LIU C B,et al. Photocatalytic wastewater purification with simultaneous hydrogen production using MoS2 QDs-decorated hierarchical assembly of ZnIn2S4 on reduced graphene oxide photocatalyst[J]. Water Res,2017, 121: 11-19.
|
32 |
HU X F, JI H H, CHANG F, et al. Simultaneous photocatalytic Cr(VI) reduction and 2,4,6-TCP oxidation over g-C3N4 under visible light irradiation[J]. Catal Today, 2014, 224: 34-40.
|
33 |
HU X J, WANG W X, XIE G Y, et al. Ternary assembly of g-C3N4/graphene oxide sheets/BiFeO3 heterojunction with enhanced photoreduction of Cr(VI) under visible-light irradiation[J].Chemosphere, 2019,216: 733-741.
|