应用化学 ›› 2022, Vol. 39 ›› Issue (4): 616-628.DOI: 10.19894/j.issn.1000-0518.210336
王雪1,2, 王意波1,2, 王显1,2, 祝建兵1,2(), 葛君杰1,2(), 刘长鹏1,2(), 邢巍1,2
收稿日期:
2021-07-09
接受日期:
2021-09-25
出版日期:
2022-04-01
发布日期:
2022-04-19
通讯作者:
祝建兵,葛君杰,刘长鹏
作者简介:
E-mail:liuchp@ciac.ac.cn基金资助:
Xue WANG1,2, Yi-Bo WANG1,2, Xian WANG1,2, Jian-Bing ZHU1,2(), Jun-Jie GE1,2(), Chang-Peng LIU1,2(), Wei XING1,2
Received:
2021-07-09
Accepted:
2021-09-25
Published:
2022-04-01
Online:
2022-04-19
Contact:
Jian-Bing ZHU,Jun-Jie GE,Chang-Peng LIU
Supported by:
摘要:
可持续能源的迅速发展,使绿色清洁的氢能源成为热点。质子交换膜(PEM)水电解是一项很有前途的技术,可高效生产高纯度氢气。IrO2作为质子交换膜(PEM)水电解槽阳极氧析出反应(OER)的商用电催化剂,既能在强酸性、高强度腐蚀条件下保持稳定,又表现出优异的催化性能。然而,由于Ir的稀缺性和昂贵的价格,提高Ir基催化剂的OER活性,开发低Ir催化剂就显得至关重要。对其反应机理的认知是当前的研究热点之一,也是设计优异的OER催化剂的关键所在。因此,首先从OER机理出发,对目前被广泛认可的吸附物逸出机理(AEM)和晶格氧逸出机理(LOER)两种反应机理进行了研究。随后,根据所提出的这两种机理,介绍了OER催化剂设计的基本准则,即调控Ir基催化剂的电子结构,改善反应中间物种在催化活性位点上的吸附能,从而提高OER催化活性。并从催化剂的结构设计、形貌控制、载体材料3个方面简单概述了最近OER催化剂的研究进展。最后,在已有研究的基础上,提出了目前OER催化剂面临的困难与挑战,这为以后相关的研究指明了方向。
中图分类号:
王雪, 王意波, 王显, 祝建兵, 葛君杰, 刘长鹏, 邢巍. 酸性电解水过程中氧析出反应的机理及铱基催化剂的研究进展[J]. 应用化学, 2022, 39(4): 616-628.
Xue WANG, Yi-Bo WANG, Xian WANG, Jian-Bing ZHU, Jun-Jie GE, Chang-Peng LIU, Wei XING. Research Progress of Mechanism of Acidic Oxygen Evolution Reaction and Development of Ir⁃based Catalysts[J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 616-628.
催化剂 Catalyst | 电解质 Electrolyte | 电极 Electrode | 负载量 Mass loading/(mg·cm-2) | 过电势 Overpotential/mV | Tafel斜率 Tafel slope/(mV·dec-1) |
---|---|---|---|---|---|
F(10%)?IrO2[ | 1 mol/L H2SO4 | Ti箔 Ti foils | 0.3 | ≈250 | 64 |
Ce0.2?IrO2@NPC[ | 0.5 mol/L H2SO4 | 碳纸 Carbon paper (CP) | 0.4 | 224 | 55.9 |
Ir4Co2Ni2O13[ | 0.1 mol/L HClO4 | Ti板 Ti plates | 0.2 | 285 | 53 |
IrCoNi[ | 0.1 mol/L HClO4 | 玻碳电极 Glassy carbon electrode (GCE) | 0.01 mgIr | 303 | 53.8 |
Li?IrSe2[ | 0.5 mol/L H2SO4 | 碳纤维纸 Carbon fiber paper (CFP) | 0.25 | 220 | - |
SrCo0.9Ir0.1O3-δ[ | 0.1 mol/L HClO4 | 玻碳电极 Glassy carbon electrode (GCE) | 0.25 | 270 | - |
(Mn0.7Ir03)O2:F[ | 1 mol/L H2SO4 | 薄膜电极 Thin film electrodes | 0.3 | 120 | 67 |
Mn?IrO2[ | 0.1 mol/L H2SO4 | Ti箔 Ti foils | - | 350 | 74 |
表1 文献中报道的Ir基催化剂的电极/电解质类型、负载量、Tafel斜率及10 mA/cm2处的过电势
Table 1 Types of electrodes/electrolytes, mass loading, Tafel slope and overpotential at 10 mA/cm2 of typical Ir?based materials reported in the literature
催化剂 Catalyst | 电解质 Electrolyte | 电极 Electrode | 负载量 Mass loading/(mg·cm-2) | 过电势 Overpotential/mV | Tafel斜率 Tafel slope/(mV·dec-1) |
---|---|---|---|---|---|
F(10%)?IrO2[ | 1 mol/L H2SO4 | Ti箔 Ti foils | 0.3 | ≈250 | 64 |
Ce0.2?IrO2@NPC[ | 0.5 mol/L H2SO4 | 碳纸 Carbon paper (CP) | 0.4 | 224 | 55.9 |
Ir4Co2Ni2O13[ | 0.1 mol/L HClO4 | Ti板 Ti plates | 0.2 | 285 | 53 |
IrCoNi[ | 0.1 mol/L HClO4 | 玻碳电极 Glassy carbon electrode (GCE) | 0.01 mgIr | 303 | 53.8 |
Li?IrSe2[ | 0.5 mol/L H2SO4 | 碳纤维纸 Carbon fiber paper (CFP) | 0.25 | 220 | - |
SrCo0.9Ir0.1O3-δ[ | 0.1 mol/L HClO4 | 玻碳电极 Glassy carbon electrode (GCE) | 0.25 | 270 | - |
(Mn0.7Ir03)O2:F[ | 1 mol/L H2SO4 | 薄膜电极 Thin film electrodes | 0.3 | 120 | 67 |
Mn?IrO2[ | 0.1 mol/L H2SO4 | Ti箔 Ti foils | - | 350 | 74 |
1 | LIAO H, SUN Y, DAI C, et al. An electron deficiency strategy for enhancing hydrogen evolution on CoP nano-electrocatalysts[J]. Nano Energy, 2018, 50: 273-280. |
2 | AN L, WEI C, LU M, et al. Recent development of oxygen evolution electrocatalysts in acidic environment[J]. Adv Mater, 2021.33:2006328. |
3 | WEI C, RAO R R, PENG J, et al. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells[J]. Adv Mater, 2019, 31(31): 1806296. |
4 | ZAHRAN Z N, MOHAMED E A, TSUBONOUCHI Y, et al. Concisely synthesized FeNiWOx film as a highly efficient and robust catalyst for electrochemical water oxidation[J]. ACS Appl Energy Mater, 2021, 4(2): 1410-1420. |
5 | SHIRVANIAN P, VAN BERKEL F. Novel components in proton exchange membrane (PEM) water electrolyzers (PEMWE): status, challenges and future needs. a mini review[J]. Electrochem Commun, 2020, 114:106704. |
6 | MAN I C, SU H Y, CALLE-VALLEJO F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165. |
7 | SONG J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chem Soc Rev, 2020, 49(7): 2196-2214. |
8 | KOPER M T M. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis[J]. Chem Sci, 2013, 4(7): 2710-2723. |
9 | MONTOYA J H, SEITZ L C, CHAKTHRANONT P, et al. Materials for solar fuels and chemicals[J]. Nat Mater, 2016, 16(1): 70-81. |
10 | WANG L, DUAN X, LIU X, et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions[J]. Adv Energy Mater, 2019, 10(4): 1903137. |
11 | REIER T, NONG H N, TESCHNER D, et al. Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts[J]. Adv Energy Mater, 2017, 7(1): 1601275. |
12 | CHENG J, YANG J, KITANO S, et al. Impact of Ir-valence control and surface nanostructure on oxygen evolution reaction over a highly efficient Ir-TiO2 nanorod catalyst[J]. ACS Catal, 2019, 9(8): 6974-6986. |
13 | KIM J, SHIH P C, QIN Y, et al. A porous pyrochlore Y2[Ru1.6Y0.4]O7-delta electrocatalyst for enhanced performance towards the oxygen evolution reaction in acidic media[J]. Angew Chem Int Ed Engl, 2018, 57(42): 13877-13881. |
14 | YAO Y, HU S, CHEN W, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Na Catal, 2019, 2(4): 304-313. |
15 | KUZNETSOV D A, NAEEM M A, KUMAR P V, et al. Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity[J]. J Am Chem Soc, 2020, 142(17): 7883-7888. |
16 | SHAN J, ZHENG Y, SHI B, et al. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation[J]. ACS Energy Lett, 2019, 4(11): 2719-2730. |
17 | NONG H N, REIER T, OH H S, et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts [J]. Nat Catal, 2018, 1(11): 841-851. |
18 | GRIMAUD A, DIAZ-MORALES O, HAN B, et al. Activating lattice oxygen redox reactions in metal oxides to catalyst oxygen evolution[J]. Nat Chem, 2017, 9(5): 457-465. |
19 | FABBRI E, SCHMIDT T J. Oxygen evolution reaction—the enigma in water electrolysis[J]. ACS Catal, 2018, 8(10): 9765-9774. |
20 | YOO J S, RONG X, LIU Y, et al. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites[J]. ACS Catal, 2018, 8(5): 4628-4636. |
21 | DICKENS C F, NØRSKOV J K. A theoretical investigation into the role of surface defects for oxygen evolution on RuO2[J]. J Phys Chem C, 2017, 121(34): 18516-18524. |
22 | WANG L, SAVELEVA V A, ZAFEIRATOS S, et al. Highly active anode electrocatalysts derived from electrochemical leaching of Ru from metallic Ir0.7Ru 0.3 for proton exchange membrane electrolyzers[J]. Nano Energy, 2017, 34: 385-391. |
23 | PEDERSEN A F, ESCUDERO-ESCRIBANO M, SEBOK B, et al. Operando XAS study of the surfaceoxidationstate on a monolayer IrOx on RuOx and Ru oxide based nanoparticles for oxygen evolution in acidic media[J]. J Phys Chem B, 2018, 122(2): 878-887. |
24 | AUDICHON T, GUENOT B, BARANTON S, et al. Preparation and characterization of supported RuxIr1-xO2 nano-oxides using a modified polyol synthesis assisted by microwave activation for energy storage applications[J]. Appl Catal B: Environ, 2017, 200: 493-502. |
25 | PHAM H H, NGUYEN N P, DO C L, et al. Nanosized IrxRu1- xO2 electrocatalysts for oxygen evolution reaction in proton exchange membrane water electrolyzer[J]. Adv Nat Sci: Nanosci Nanotechnol, 2015, 6(2): 025015. |
26 | WANG Y, HAO S, LIU X, et al. Ce-doped IrO2 electrocatalysts with enhanced performance for water oxidation in acidic media[J]. ACS Appl Mater Interfaces, 2020, 12(33): 37006-37012. |
27 | LEE H, KIM J Y, LEE S Y, et al. Comparative study of catalytic activities among transition metal-doped IrO2 nanoparticles[J]. Sci Rep, 2018, 8(1): 16777. |
28 | FENG J, LV F, ZHANG W, et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis[J]. Adv Mater, 2017, 29(47): 1703798. |
29 | ZAMAN W Q, WANG Z, SUN W, et al. Ni-Co codoping breaks the limitation of single-metal-doped IrO2 with higher oxygen evolution reaction performance and less Iiidium[J]. ACS Energy Lett, 2017, 2(12): 2786-2793. |
30 | PEI J, MAO J, LIANG X, et al. Ir-Cu nanoframes: one-pot synthesis and efficient electrocatalysts for oxygen evolution reaction[J]. Chem Commun, 2016, 52(19): 3793-3796. |
31 | LI G, YU H, WANG X, et al. Highly effective IrxSn1- xO2 electrocatalysts for oxygen evolution reaction in the solid polymer electrolyte water electrolyser[J]. PhysChemChemPhys, 2013, 15(8): 2858-2866. |
32 | HU W, CHEN S, XIA Q. IrO2/Nb-TiO2 electrocatalyst for oxygen evolution reaction in acidic medium[J]. Int J Hydrogen Energy, 2014, 39(13): 6967-6976. |
33 | YAN Z, ZHAO Y, ZHANG Z, et al. A study on the performance of IrO2-Ta2O5 coated anodes with surface treated Ti substrates[J]. Electrochim Acta, 2015, 157: 345-350. |
34 | KOKOH K B, MAYOUSSE E, NAPPORN T W, et al. Efficient multi-metallic anode catalysts in a PEM water electrolyzer[J]. Int J Hydrogen Energy, 2014, 39(5): 1924-1931. |
35 | MA C, SUN W, QAMAR ZAMAN W, et al. Lanthanides regulated the amorphization-crystallization of IrO2 for outstanding OER performance[J]. ACS Appl Mater Interfaces, 2020, 12(31): 34980-34989. |
36 | NONG H N, GAN L, WILLINGER E, et al. IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting[J]. Chem Sci, 2014, 5(8): 2955-2963. |
37 | TACKETT B M, SHENG W, KATTEL S, et al. Reducing Iridium loading in oxygen evolution reaction electrocatalysts using core-shell particles with Nntride cores[J]. ACS Catal, 2018, 8(3): 2615-2621. |
38 | ESCUDERO-ESCRIBANO M, PEDERSEN A F, PAOLI E A, et al. Importance of surface IrOx in stabilizing RuO2 for oxygen evolution[J]. J Phys Chem B, 2018, 122(2): 947-955. |
39 | GAO J, XU C Q, HUNG S F, et al. Breakinglong-range order in iridium oxide by alkali ion for efficient water oxidation[J]. J Am Chem Soc, 2019, 141(7): 3014-3023. |
40 | CHEN H, SHI L, LIANG X, et al. Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts[J]. Angew Chem Int Ed Engl, 2020, 59(44): 19654-19658. |
41 | DANILOVIC N, SUBBARAMAN R, CHANG K C, et al. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments[J]. Angew Chem Int Ed Engl, 2014, 53(51): 14016-14021. |
42 | LI G, LI S, GE J, et al. Discontinuously covered IrO2-RuO2@Ru electrocatalysts for the oxygen evolution reaction: how high activity and long-term durability can be simultaneously realized in the synergistic and hybrid nano-structure[J]. J Mater Chem A, 2017, 5(33): 17221-17229. |
43 | LIM J, PARK D, JEON S S, et al. Ultrathin IrO2 nanoneedles for electrochemical water oxidation[J]. Adv Functl Mater, 2018, 28(4): 1704796. |
44 | FU L, YANG F, CHENG G, et al. Ultrathin Ir nanowires as high-performance electrocatalysts for efficient water splitting in acidic media[J]. Nanoscale, 2018, 10(4): 1892-1897. |
45 | CUI Z, QI R. First-principles simulation of oxygen evolution reaction (OER) catalytic performance of IrO2 bulk-like structures: nanosphere, nanowire and nanotube[J]. Appl Surface Sci, 2021, 554: 149591. |
46 | CHANDRA D, ABE N, TAKAMA D, et al. Open pore architecture of an ordered mesoporous IrO2 thin film for highly efficient electrocatalytic water oxidation[J]. ChemSusChem, 2015, 8(5): 795-799. |
47 | SHI Q, ZHU C, DU D, et al. Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range[J]. J Mater Chemi A, 2018, 6(19): 8855-8859. |
48 | TAKIMOTO D, FUKUDA K, MIYASAKA S, et al. Synthesis and oxygen electrocatalysis of iridium oxide nanosheets[J]. Electrocatalysis, 2016, 8(2): 144-150. |
49 | CHENG Z, HUANG B, PI Y, et al. Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting[J]. Natl Sci Rev, 2020, 7(8): 1340-1348. |
50 | JIANG B, GUO Y, KIM J, et al. Mesoporous metallic iridium nanosheets[J]. J Am Chem Soc, 2018, 140(39): 12434-12441. |
51 | JIANG B, KIM J, GUO Y, et al. Efficient oxygen evolution on mesoporous IrOx nanosheets[J]. Catal Sci Technol, 2019, 9(14): 3697-3702. |
52 | PI Y, ZHANG N, GUO S, et al. Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range[J]. Nano Lett, 2016, 16(7): 4424-4430. |
53 | JENSEN A W, SIEVERS G W, JENSEN K D, et al. Self-supported nanostructured iridium-based networks as highly active electrocatalysts for oxygen evolution in acidic media[J]. J Mater Chem A, 2020, 8(3): 1066-1071. |
54 | LI G, LI S, XIAO M, et al. Nanoporous IrO2 catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure[J]. Nanoscale, 2017, 9(27): 9291-9298. |
55 | KUNDU M K, MISHRA R, BHOWMIK T, et al. Three-dimensional hierarchically porous iridium oxide-nitrogen doped carbon hybrid: an efficient bifunctional catalyst for oxygen evolution and hydrogen evolution reaction in acid[J]. Int J Hydrogen Energy, 2020, 45(11): 6036-6046. |
56 | XU J, LIU G, LI J, et al. The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction[J]. Electrochim Acta, 2012, 59: 105-112. |
57 | BÖHM D, BEETZ M, SCHUSTER M, et al. Efficient OER catalyst with low Ir volume density obtained by homogeneous deposition of Iridium oxide nanoparticles on macroporous antimony-doped tin oxide support[J]. Adv Funct Mater, 2019, 30(1):1906670. |
58 | OH H S, NONG H N, REIER T, et al. Electrochemical catalyst-support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction[J]. J Am Chem Soc, 2016, 138(38): 12552-12563. |
59 | HAN S B, MO Y H, LEE Y S, et al. Mesoporous iridium oxide/Sb-doped SnO2 nanostructured electrodes for polymer electrolyte membrane water electrolysis[J]. Int J Hydrogen Energy, 2020, 45(3): 1409-1416. |
60 | LU Z X, SHI Y, YAN C F, et al. Investigation on IrO2 supported on hydrogenated TiO2 nanotube array as OER electro-catalyst for water electrolysis[J]. Int J Hydrogen Energy, 2017, 42(6): 3572-3578. |
61 | LV H, ZUO J, ZHOU W, et al. Synthesis and activities of IrO2/Ti1- xWxO2 electrocatalyst for oxygen evolution in solid polymer electrolyte water electrolyzer[J]. J Electroanall Chemy, 2019, 833: 471-479. |
62 | LI G, LI K, YANG L, et al. Boosted performance of Ir species by employing TiN as the support toward oxygen evolution reaction[J]. ACS Appl Mater Interfaces, 2018, 10(44): 38117-38124. |
63 | KADAKIA K S, JAMPANI P H, VELIKOKHATNYI O I, et al. Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis[J]. J Power Sources, 2014, 269: 855-865. |
64 | ZHENG T, SHANG C, HE Z, et al. Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting[J]. Angew Chem Int Ed Engl, 2019, 58(41): 14764-14769. |
65 | CHEN Y, LI H, WANG J, et al. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid[J]. Nat Commun, 2019, 10(1): 572. |
66 | GHADGE S D, PATEL P P, DATTA M K, et al. Fluorine substituted (Mn,Ir)O2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis[J]. RSC Adv, 2017, 7(28): 17311-17324. |
67 | ETZI COLLER PASCUZZI M, HOFMANN J P, HENSEN E J M. Promoting oxygen evolution of IrO2 in acid electrolyte by Mn[J]. Electrochim Acta, 2021, 366:137448. |
68 | SHAN J, YE C, CHEN S, et al. Short-rangeordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation[J]. J Am Chem Soc, 2021, 143(13): 5201-5211. |
69 | LIM J, YANG S, KIM C, et al. Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction[J]. Chem Commun, 2016, 52(32): 5641-5644. |
70 | ALIA S M, SHULDA S, NGO C, et al. Iridium-based nanowires as highly active, oxygen evolution reaction electrocatalysts[J]. ACS Catal, 2018, 8(3): 2111-2120. |
71 | TONG J, LIU Y, PENG Q, et al. An efficient Sb-SnO2-supported IrO2 electrocatalyst for the oxygen evolution reaction in acidic medium[J]. J Mater Sci, 2017, 52: 13427-13443. |
72 | HAO C, LV H, MI C, et al. Investigation of mesoporous niobium-doped TiO2 as an oxygen evolution catalyst support in an SPE water electrolyzer[J]. Sustain Chem Eng, 2016, 4: 746-756. |
73 | LV H, ZHANG G, HAO C, et al. Activity of IrO2 supported on tantalum-doped TiO2 electrocatalyst for solid polymer electrolyte water electrolyzer[J]. RSC Adv, 2017, 7: 40427-40436. |
[1] | 王丹, 侯现飚, 汪兴坤, 刘志承, 王焕磊, 黄明华. 应用于锌空气电池的碳包覆铁基纳米颗粒电催化剂研究进展[J]. 应用化学, 2022, 39(10): 1488-1500. |
[2] | 陈思,孙立臻,舒欣欣,张进涛. 石墨烯基催化剂的设计合成与电催化应用[J]. 应用化学, 2018, 35(3): 272-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||