[1] LOVLEY D R, PHILLIPS E J P, GORBY Y A, et al. Microbial reduction of uranium[J]. Nature, 1991, 350(6317):413-416. [2] LIU Y, YUAN L, YUAN Y, et al. A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15[J]. J Radioanal Nucl Chem, 2012, 292(2):803-810. [3] YANG W, BAI Z Q, SHI W Q, et al. MOF-76:from a luminescent probe to highly efficient UVI sorption material[J]. Chem Commun, 2013, 49(88):10415-10417. [4] SAGHATCHI H, ANSARI R, MOUSAVI H Z. Highly efficient adsorptive removal of uranyl ions from aqueous solutions using dicalcium phosphate nanoparticles as a superabsorbent[J]. Nucl Eng Technol, 2018, 50(7):1112-1119. [5] WANG D, SONG J, WEN J, et al. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent[J]. Adv Energy Mater, 2018, 8(33):1802607. [6] PREETHA C R, GLADIS J M, RAO T P, et al. Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles[J]. Environ Sci Technol, 2006, 40(9):3070-3074. [7] SUN Y, SHAO D, CHEN C, et al. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[J]. Environ Sci Technol, 2013, 47(17):9904-9910. [8] IVANOV A S, PARKER B F, ZHANG Z, et al. Siderophore-inspired chelator hijacks uranium from aqueous medium[J]. Nat Commun, 2019, 10(1):819. [9] SHAMSIPUR M, FASIHI J, ASHTARI K. Grafting of ion-imprinted polymers on the surface of silica gel particles through covalently surface-bound initiators:a selective sorbent for uranyl ion[J]. Anal Chem, 2007, 79(18):7116-7123. [10] CARBONI M, ABNEY C W, LIU S, et al. Highly porous and stable metal-organic frameworks for uranium extraction[J]. Chem Sci, 2013, 4(6):2396-2402. [11] JAMES S L. Metal-organic frameworks [J]. Chem Soc Rev, 2003, 32(5):276-288. [12] FURUKAWA H, KO N, GO Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990):424. [13] MURRAY L J, DINCǍ M, LONG J R. Hydrogen storage in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5):1294-1314. [14] MA L, ABNEY C, LIN W. Enantioselective catalysis with homochiral metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5):1248-1256. [15] LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chem Rev, 2012, 112(2):869-932. [16] DENG H, GRUNDER S, CORDOVA K E, et al. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336(6084):1018. [17] ALLENDORF M D, BAUER C A, BHAKTA R K, et al. Luminescent metal organic frameworks[J]. Chem Soc Rev, 2009, 38(5):1330-1352. [18] JIANG H L, LIU B, AKITA T, et al. Au@ZIF-8:CO Oxidation over gold nanoparticles deposited to metal-organic framework[J]. J Am Chem Soc, 2009, 131(32):11302-11303. [19] LU G, HUPP J T. Metal-organic frameworks as sensors:a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases [J]. J Am Chem Soc, 2010, 132(23):7832-7833. [20] WANG C, ZHENG T, LUO R, et al. In situ growth of ZIF-8 on pan fibrous filters for highly efficient U(VI) removal[J]. ACS Appl Mater Interfaces, 2018, 10(28):24164-24171. [21] ZHENG J, LIN Z, LIN G, et al. Preparation of magnetic metal-organic framework nanocomposites for highly specific separation of histidine-rich proteins[J]. J Mater Chem B, 2015, 3(10):2185-2191. [22] YEAN S, CONG L, YAVUZ C T, et al. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate[J]. J Mater Res, 2005, 20(12):3255-3264. [23] LIU X, SUN J, XU X, et al. Adsorption and desorption of U(VI) on different-size graphene oxide[J]. Chem Eng J, 2019, 360:941-950. [24] TSAI W T, LAI C W, HSIEN K J. Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution[J]. J Colloid Interface Sci, 2003, 263(1):29-34. [25] ZHAO T, LI S H, SHEN L, et al. The sized controlled synthesis of MIL-101(Cr) with enhanced CO2 adsorption property[J]. Inorg Chem Commun, 2018, 96:47-51. [26] XIN C, ZHAN H, HUANG X, et al. Effect of various alkaline agents on the size and morphology of nano-sized HKUST-1 for CO2 adsorption[J]. RSC Adv, 2015, 5(35):27901-27911. [27] LEE Y R, JANG M S, CHO H Y, et al. ZIF-8:a comparison of synthesis methods[J]. Chem Eng J, 2015, 271:276-280. [28] SÁNCHEZ-LAÍNEZ J, ZORNOZA B, FRIEBE S, et al. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test[J]. J Membr Sci, 2016, 515:45-53. [29] TRAN B L, CHIN H Y, CHANG B K, et al. Dye adsorption in ZIF-8:the importance of external surface area[J]. Micropor Mesopor Mater, 2019, 277:149-153. [30] LI J, WANG X, ZHAO G, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions[J]. Chem Soc Rev, 2018, 47(7):2322-2356. [31] LUO B C, YUAN L Y, CHAI Z F, et al. U(VI) capture from aqueous solution by highly porous and stable MOFs:UiO-66 and its amine derivative[J]. J Radioanal Nucl Chem, 2016, 307(1):269-276. [32] LIU S, LUO M, LI J, et al. Adsorption equilibrium and kinetics of uranium onto porous azo-metal-organic frameworks[J]. J Radioanal Nucl Chem, 2016, 310(1):353-362. [33] LIU L, YANG W, GU D, et al. In situ preparation of chitosan/ZIF-8 composite beads for highly efficient removal of U(VI)[J]. Front Chem, 2019, 7(607). [34] DUTTA R K, SHAIDA M A, SINGLA K, et al. Highly efficient adsorptive removal of uranyl ions by a novel graphene oxide reduced by adenosine 5'-monophosphate (RGO-AMP)[J]. J Mater Chem A, 2019, 7(2):664-678. |