[1] | Guo Z,Park S,Yoon J,et al. Recent Progress in the Development of Near-infrared Fluorescent Probes for Bioimaging Applications[J]. Chem Soc Rev,2014,43(1):16-29. | [2] | Shanmugam V,Selvakumar S,Yeh C S.Near-Infrared Light-Responsive Nanomaterials in Cancer Therapeutics[J]. Chem Soc Rev,2014,43(17):6254-6287. | [3] | Sun Y,Qu C,Chen H,et al. Novel Benzo-bis(1,2,5-thiadiazole) Fluorophores for in Vivo NIR-Ⅱ Imaging of Cancer[J]. Chem Sci,2016,7(9):6203-6207. | [4] | Diao S,Hong G,Antaris A L,et al. Biological Imaging Without Autofluorescence in the Second Near-infrared Region[J]. Nano Res,2015,8(9):3027-3034. | [5] | Smith A M,Mohs A M,Nie S.Tuning the Optical and Electronic Properties of Colloidal Nanocrystals by Lattice Strain[J]. Nat Nanotechnol,2009,4(1):56-63. | [6] | Pansare V J,Hejazi S,Faenza W J,et al. Review of Long-Wavelength Optical and NIR Imaging Materials:Contrast Agents, Fluorophores, and Multifunctional Nano Carriers[J]. Chem Mater,2012,24(5):812-827. | [7] | Hong G,Diao S,Chang J,et al. Through-Skull Fluorescence Imaging of the Brain in a New Near-infrared Window[J]. Nat Photonics,2014,8(9):723-730. | [8] | Robinson J T,Hong G,Liang Y,et al. In Vivo Fluorescence Imaging in the Second Near-infrared Window with Long Circulating Carbon Nanotubes Capable of Ultrahigh Tumor Uptake[J]. J Am Chem Soc,2012,134(25):10664-10669. | [9] | Iijima S.Helical Microtubules of Graphitic Carbon[J]. Nature,1991,354(6348):56-58. | [10] | Balasubramanian K,Burghard M.Chemically Functionalized Carbon Nanotubes[J]. Small,2010,1(2):180-192. | [11] | De La Zerda A,Zavaleta C,Keren S,et al. Carbon Nanotubes as Photoacoustic Molecular Imaging Agents in Living Mice[J]. Nat Nanotechnol,2008,3(9):557-562. | [12] | Cherukuri P,Gannon C J,Leeuw T K,et al. Mammalian Pharmacokinetics of Carbon Nanotubes Using Intrinsic Near-infrared Fluorescence[J]. Proc Natl Acad Sci USA,2006,103(50):18882-18886. | [13] | Chen Z,Tabakman S M,Goodwin A P,et al. Protein Microarrays with Carbon Nanotubes as Multicolor Raman Labels[J]. Nat Biotechnol,2008,26(11):1285-1292. | [14] | Welsher K,Liu Z,Sherlock S P,et al. A Route to Brightly Fluorescent Carbon Nanotubes for Near-infrared Imaging in Mice[J]. Nat Nanotechnol,2009,4(11):773-780. | [15] | Welsher K,Sherlock S P,Dai H.Deep-Tissue Anatomical Imaging of Mice Using Carbon Nanotube Fluorophores in the Second Near-infrared Window[J]. Proc Natl Acad Sci USA,2011,108(22):8943-8948. | [16] | Schramm P,Schellinger P D,Fiebach J B,et al. Comparison of CT and CT Angiography Source Images with Diffusion-Weighted Imaging in Patients with Acute Stroke Within 6 Hours after Onset[J]. Stroke,2002,33(10):2426-2432. | [17] | Wright S N,Kochunov P,Mut F,et al. Digital Reconstruction and Morphometric Analysis of Human Brain Arterial Vasculature from Magnetic Resonance Angiography[J]. Neuroimage,2013,82:170-181. | [18] | Huang C H,Chen C C,Siow T Y,et al. High-Resolution Structural and Functional Assessments of Cerebral Microvasculature Using 3D Gas DeltaR2*-mMRA[J]. PLoS One,2013,8(11):e78186. | [19] | Flohr T G,Mccollough C H,Bruder H,et al. First Performance Evaluation of a Dual-source CT(DSCT) System[J]. EurJ Radiol,2006,16(2):256-268. | [20] | Jacoby C,Boring Y C,Beck A,et al. Dynamic Changes in Murine Vessel Geometry Assessed by High-Resolution Magnetic Resonance Angiography:A 9.4T Study[J]. J Magn Reson Imaging,2008,28(3):637-645. | [21] | Paulus M J,Gleason S S,Kennel S J,et al. High Resolution X-Ray Computed Tomography:An Emerging Tool for Small Animal Cancer Research[J]. Neoplasia,2000,2(1/2):62-70. | [22] | Frangioni J.In Vivo Near-infrared Fluorescence Imaging[J]. Curr Opin Chem Biol,2003,7(5):626-634. | [23] | Horton N G,Wang K,Kobat D,et al. In Vivo Three-Photon Microscopy of Subcortical Structures within an Intact Mouse Brain[J]. Nat Photonics,2013,7(3):205-209. | [24] | Drew P J,Shih A Y,Driscoll J D,et al. Chronic Optical Access Through a Polished and Reinforced Thinned Skull[J]. Nat Methods,2010,7(12):981-984. | [25] | Yang G,Pan F,Parkhurst C N,et al. Thinned-Skull Cranial Window Technique for Long-Term Imaging of the Cortex in Live Mice[J]. Nat Protoc,2010,5(2):201-208. | [26] | Diao S,Blackburn J L,Hong G,et al. Fluorescence Imaging in Vivo at Wavelengths Beyond 1500 nm[J]. Angew Chem Int Ed,2015,54(49):14758-14762. | [27] | Kim S,Fisher B,Eisler H J,et al. Type-Ⅱ Quantum Dots:CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures[J]. J Am Chem Soc,2003,125(38):11466-11467. | [28] | Nikolai G,I Igor L R,Maria R G,et al. Labeling of Biocompatible Polymer Microcapsules with Near-Infrared Emitting Nanocrystals[J]. Nano Lett,2003,3(3):369-372. | [29] | Gaponik N,Talapin D V,Rogach A L,et al. Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals:From Water to Nonpolar Organic Solvents[J]. Nano Lett,2002,2(8):803-806. | [30] | Xie R,Peng X.Synthetic Scheme for High-Quality InAs Nanocrystals Based on Self-focusing and One-Pot Synthesis of InAs-Based Core-Shell Nanocrystals[J]. Angew Chem Int Ed,2008,47(40):7677-7680. | [31] | Liu Z,Kumbhar A,Xu D,et al.Coreduction Colloidal Synthesis of ⅢⅤ Nanocrystals:The Case of InP[J]. Angew Chem Int Ed,2008,47(19):3540-3542. | [32] | Liu W,Greytak A B,Lee J,et al. Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand[J]. J Am Chem Soc,2010,132(2):472-483. | [33] | Hyun B R,Chen H,Rey D A,et al. Near-Infrared Fluorescence Imaging with Water-Soluble Lead Salt Quantum Dots[J]. J Phys Chem B,2007,111(20):5726-5730. | [34] | Sun H,Zhang F,Wei H,et al. The Effects of Composition and Surface Chemistry on the Toxicity of Quantum Dots[J]. J Mater Chem B,2013,1(47):6485-6494. | [35] | Reiss P,Protiere M,Li L.Core/Shell Semiconductor Nanocrystals[J]. Small,2009,5(2):154-168. | [36] | Wang C,Wang Y,Xu L,et al. Facile Aqueous-Phase Synthesis of Biocompatible and Fluorescent Ag2S Nanoclusters for Bioimaging:Tunable Photoluminescence from Red to Near Infrared[J]. Small,2012,8(20):3137-3142. | [37] | Hocaoglu I,Demir F,Birer O,et al. Emission Tunable, Cyto/Hemocompatible, Near-IR-Emitting Ag2S Quantum Dots by Aqueous Decomposition of DMSA[J]. Nanoscale,2014,6(20):11921-11931. | [38] | Chen H,Li B,Zhang M,et al. Characterization of Tumor-Targeting Ag2S Quantum Dots for Cancer Imaging and Therapy in Vivo[J]. Nanoscale,2014,6(21):12580-12590. | [39] | Gu Y,Cui R,Zhang Z,et al. Ultrasmall Near-Infrared Ag2Se Quantum Dots with Tunable Fluorescence for in Vivo Imaging[J]. J Am Chem Soc,2011,134(1):79-82. | [40] | Du Y,Bing X,Tao F,et al. Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor[J]. J Am Chem Soc,2010,132(5):1470-1471. | [41] | Zhang Y,Hong G,Zhang Y,et al.Ag2S Quantum Dot:A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-infrared Window[J]. ACS Nano,2012,6(5):3695-3702. | [42] | Shen S,Zhang Y,Peng L,et al. Matchstick-Shaped Ag2S-ZnS Heteronanostructures Preserving both UV/Blue and Near-infrared Photoluminescence[J]. Angew Chem Int Ed,2011,50(31):7115-7118. | [43] | Hong G,Robinson J T,Zhang Y,et al. In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near-infrared Region[J]. Angew Chem Int Ed,2012,51(39):9818-9821. | [44] | Dong B,Li C,Chen G,et al. Facile Synthesis of Highly Photoluminescent Ag2Se Quantum Dots as a New Fluorescent Probe in the Second Near-infrared Window for in Vivo Imaging[J]. Chem Mater,2013,25(12):2503-2509. | [45] | Chen G,Tian F,Zhang Y,et al. Tracking of Transplanted Human Mesenchymal Stem Cells in Living Mice Using Near-Infrared Ag2S Quantum Dots[J]. Adv Funct Mater,2014,24(17):2481-2488. | [46] | Tan M C,Kumar G A,Riman R E,et al. Synthesis and Optical Properties of Infrared-Emitting YF3:Nd Nanoparticles[J]. J Appl Phys,2009,106(6):063118. | [47] | Naczynski D J,Tan M C,Zevon M,et al. Rare-Earth-Doped Biological Composites as in Vivo Shortwave Infrared Reporters[J]. Nat Commun,2013,4(3):1345-1346. | [48] | Liu B,Chen X,Zou Y,et al. A Benzo[1,2-b:4,5-b]difuran- and Thieno-[3,4-b]thiophene-Based Low Bandgap Copolymer for Photovoltaic Applications[J]. Polym Chem,2013,4(3):470-476. | [49] | Li G,Shrotriya V,Huang J,et al. High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-organization of Polymer Blends[J]. Nat Mater,2005,4(11):864-868. | [50] | Kawamura Y,Yanagida S,Forrest S R.Energy transfer in Polymer Electrophosphorescent Light Emitting Devices with Single and Multiple Doped Luminescent Layers[J]. J Appl Phys,2002,92(1):87-93. | [51] | Burroughes J H,Bradley D D C,Brown A R,et al. Light-Emitting Diodes Based on Conjugated Polymers[J]. Nature,1990,347(6293):539-541. | [52] | Facchetti A.π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications[J]. Chem Mater,2011,23(3):733-758. | [53] | Ong B S,Wu Y,Liu P,et al. High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors[J]. J Am Chem Soc,2004,126(11):3378-3379. | [54] | Hong G,Zou Y,Antaris A L,et al. Ultrafast Fluorescence Imaging in Vivo with Conjugated Polymer Fluorophores in the Second Near-infrared Window[J]. Nat Commun,2014,5:4206. | [55] | Shou K,Tang Y,Chen H,et al. Diketopyrrolopyrrole-Based Semiconducting Polymer Nanoparticles for in Vivo Second Near-infrared Window Imaging and Image-Guided Tumor Surgery[J]. Chem Sci,2018,9(12):3105-3110. | [56] | Wu J,You L,Lan L,et al. Semiconducting Polymer Nanoparticles for Centimeters-Deep Photoacoustic Imaging in the Second Near-infrared Window[J]. Adv Mater,2017,29(41):1703403. | [57] | Guo B,Sheng Z,Kenry K,et al. Biocompatible Conjugated Polymer Nanoparticles for Highly Efficient Photoacoustic Imaging of Orthotopic Brain Tumors in the Second Near-infrared Window[J]. Mater Horiz,2017,4(6):1151-1156. | [58] | Jiang Y,Upputuri P K,Xie C,et al. Broadband Absorbing Semiconducting Polymer Nanoparticles for Photoacoustic Imaging in Second Near-infrared Window[J]. Nano Lett,2017,17(8):4964-4969. | [59] | Yang Q,Ma Z,Wang H,et al. Rational Design of Molecular Fluorophores for Biological Imaging in the NIR-Ⅱ Window[J]. Adv Mater,2017,29(12):1605497. | [60] | Zhu S,Yang Q,Antaris A L,et al. Molecular Imaging of Biological Systems with a Clickable Dye in the Broad 800- to 1,700-nm Near-infrared Window[J]. Proc Natl Acad Sci USA,2017,114(5):962-967. | [61] | Qian G,Zhong Z,Luo M,et al. Simple and Efficient Near-infrared Organic Chromophores for Light-Emitting Diodes with Single Electroluminescent Emission Above 1000 nm[J]. Adv Mater,2009,21(1):111-116. | [62] | Antaris A L,Chen H,Cheng K,et al. A Small-Molecule Dye for NIR-Ⅱ Imaging[J]. Nat Mater,2015,15(2):235-242. | [63] | Antaris A L,Chen H,Diao S,et al. A High Quantum Yield Molecule-Protein Complex Fluorophore for Near-infrared Ⅱ Imaging[J]. Nat Commun,2017,8:15269. | [64] | Feng Y,Zhu S,Antaris A L,et al. Live Imaging of Follicle Stimulating Hormone Receptors in Gonads and Bones Using Near Infrared Ⅱ Fluorophore[J]. Chem Sci,2017,8(5):3703-3711. | [65] | Sun Y,Zeng X,Xiao Y,et al. Novel Dual-Function Near-infrared Ⅱ Fluorescence and PET Probe for Tumor Delineation and Image-Guided Surgery[J]. Chem Sci,2018,9(8):2092-2097. | [66] | Sun Y,Ding M,Zeng X,et al. Novel Bright-Emission Small-Molecule NIR-Ⅱ Fluorophores for in Vivo Tumor Imaging and Image-Guided Surgery[J]. Chem Sci,2017,8(5):3489-3493. | [67] | Li B N,Lu L F,Zhao M Y,et al. An Efficient 1064 nm NIR-Ⅱ Excitation Fluorescent Molecular Dye for Deep-Tissue High-Resolution Dynamic Bioimaging[J]. Angew Chem Int Ed,2018,57(25):7483-7487. | [68] | Cosco E D,Caram J R,Bruns O T,et al. Flavylium Polymethine Fluorophores for Near- and Shortwave Infrared Imaging[J]. Angew Chem Int Ed,2017,56(42):13126-13129. | [69] | Chen J R,Wong J B,Kuo P Y,et al. Synthesis and Characterization of Coumarin-Based Spiropyran Photochromic Colorants[J]. Org Lett,2008,10(21):4823-4826. | [70] | Shou K,Qu C,Sun Y,et al. Multifunctional Biomedical Imaging in Physiological and Pathological Conditions Using a NIR-Ⅱ Probe[J]. Adv Funct Mater,2017,27(23):1700995. | [71] | Tao Z,Hong G,Shinji C,et al. Biological Imaging Using Nanoparticles of Small Organic Molecules with Fluorescence Emission at Wavelengths Longer than 1000 nm[J]. Angew Chem Int Ed,2013,52(49):13002-13006. | [72] | Xu G,Yan Q,Lv X,et al. Imaging of Colorectal Cancers Using Activatable Nanoprobes with Second Near-infrared Window Emission[J]. Angew Chem Int Ed,2018,57(14):3626-3630. |
|