[1] | Yang J,Sudik A,Wolverton C,et al.High Capacity Hydrogen Storage Materials:Attributes for Automotive Applications and Techniques for Materials Discovery[J]. Chem Soc Rev,2010,39(2):656-675. | [2] | Chen P,Zhu M. Recent Progress in Hydrogen Storage[J]. Mater Today,2008,11(12):36-43. | [3] | Lototsky M V,Yartys V A,Zavaliy I Y. Vanadium-based BCC Alloys:Phase-structural Characteristics and Hydrogen Sorption Properties[J]. J Alloys Compd,2005,404:421-426. | [4] | Basak S,Shashikala K,Sengupta P,et al.Hydrogen Absorption Properties of Ti-V-Fe Alloys:Effect of Cr Substitution[J]. Int J Hydrogen Energy,2007,32(18):4973-4977. | [5] | Suwarno S,Gosselin Y,Solberg J K,et al.Selective Hydrogen Absorption from Gaseous Mixtures by BCC Ti-V Alloys[J]. Int J Hydrogen Energy,2012,37(5):4127-4138. | [6] | Cho S W,Akiba E,Nakamura Y,et al.Hydrogen Isotope Effects in Ti1.0Mn0.9V1.1 and Ti1.0Cr1.5V1.7 Alloys[J]. J Alloys Compd,2000,297(1):253-260. | [7] | Zhao X,Ma L,Yao Y,et al.Ti2Ni Alloy:A Potential Candidate for Hydrogen Storage in Nickel/metal Hydride Secondary Batteries[J]. Energy Environ Sci,2010,3(9):1316-1321. | [8] | Liu W,Liang F,Zhang S,et al.Electrochemical Properties of Ti-based Quasicrystal and ZrV2 Laves Phase Alloy Composite Materials as Negative Electrode for Ni-MH Secondly Batteries[J]. J Non-Cryst Solids,2012,358(15):1846-1849. | [9] | Yu X B,Yang Z X,Liu H K,et al.The Effect of a Ti-V-based BCC Alloy as a Catalyst on the Hydrogen Storage Properties of MgH2[J]. Int J Hydrogen Energy,2010,35(12):6338-6344. | [10] | Yu X B,Shi Q,Vegge T,et al.Dehydrogenation in Lithium Borohydride/Conventional Metal Hydride Composite Based on a Mutual Catalysis[J]. Scr Mater,2009,61(4):359-362. | [11] | Papathanassopoulos K,Wenzl H. Pressure-composition Isotherms of Hydrogen and Deuterium in Vanadium Films Measured with a Vibrating Quartz Microbalance[J]. J Phys F:Met Phys,1982,12(7):1369. | [12] | Tsukahara M. Hydrogenation Properties of Vanadium-Based Alloys with Large Hydrogen Storage Capacity[J]. Mater Trans,2011,52(1):68-72. | [13] | Pukazhselvan D,Kumar V,Singh S K. High Capacity Hydrogen Storage: Basic Aspects, New Developments and Milestones[J]. Nano Energy,2012,1(4):566-589. | [14] | Hang Z,Xiao X,Tan D,et al.Microstructure and hydrogen Storage Properties of Ti10V84-xFe6Zrx(x=1~8) Alloys[J]. Int J Hydrogen Energy,2010,35(7):3080-3086. | [15] | Park C N,Luo S,Flanagan T B. Analysis of Sloping Plateaux in Alloys and intermetallic Hydrides:I.Diagnostic Features[J]. J Alloys Compd,2004,384(1):203-207. | [16] | Hang Z,Xiao X,Li S,et al.Influence of Heat Treatment on the Microstructure and Hydrogen Storage Properties of Ti10V77Cr6Fe6Zr Alloy[J]. J Alloys Compd,2012,529:128-133. | [17] | Kabutomori T,Takeda H,Wakisaka Y,et al.Hydrogen Absorption Properties of Ti-Cr-A(A=V,Mo or Other Transition Metal) BCC Solid Solution Alloys[J]. J Alloys Compd,1995,231(1):528-532. | [18] | Tamura T,Kazumi T,Kamegawa A,et al.Effects of Protide Structures on Hysteresis in Ti-Cr-V Protium Absorption Alloys[J]. Mater Trans,2002,43(11):2753-2756. | [19] | Towata S,Noritake T,Itoh A,et al.Effect of Partial Niobium and Iron Substitution on Short-Term Cycle Durability of Hydrogen Storage Ti-Cr-V Alloys[J]. Int J Hydrogen Energy,2013,38(7):3024-3029. | [20] | Towata S,Noritake T,Itoh A,et al.Cycle Durability of Ti-Cr-V Alloys Partially Substituted by Nb or Fe[J]. J Alloys Compd,2013,580:S226-S228. | [21] | Aoki M,Noritake T,Ito A,et al.Improvement of cyclic durability of Ti-Cr-V Alloy by Fe substitution[J]. Int J Hydrogen Energy,2011,36(19):12329-12332. | [22] | Wan C,Ju X,Qi Y,et al.A study on Crystal Structure and Chemical State of TiCrVMn hydrogen Storage Alloys During Hydrogen Absorption-Desorption Cycling[J]. Int J Hydrogen Energy,2009,34(21):8944-8950. | [23] | Itoh H,Arashima H,Kubo K,et al.Improvement of Cyclic Durability of BCC Structured Ti-Cr-V Alloys[J]. J Alloys Compd,2005,404:417-420. | [24] | Andreasen A. Predicting Formation Enthalpies of Metal Hydrides[M]. RISO,2004. | [25] | Tamura T,Kazumi T,Kamegawa A,et al.Protium Absorption Properties and Protide Formations of Ti-Cr-V Alloys[J]. J Alloys Compd,2003,356:505-509. | [26] | Lynch J F,Maeland A J,Libowitz G G. Lattice Parameter Variation and Thermodynamics of Dihydride Formation in the Vanadium-Rich V-Ti-Fe/H2 System[J]. Z Phys Chem,1985,145(12):51-59. | [27] | Yukawa H,Takagi M,Teshima A,et al.Alloying Effects on the Stability of Vanadium Hydrides[J]. J Alloys Compd,2002,330:105-109. | [28] | Arashima H,Takahashi F,Ebisawa T,et al.Correlation Between Hydrogen Absorption Properties and Homogeneity of Ti-Cr-V Alloys[J]. J Alloys Compd,2003,356:405-408. | [29] | Huot J,Enoki H,Akiba E. Synthesis, Phase Transformation,Hydrogen Storage Properties of Ball-milled TiV0.9Mn1.1[J]. J Alloys Compd,2008,453(1):203-209. | [30] | Aleksanyan A G,Dolukhanyan S K,Shekhtman V S,et al.Formation of Alloys in Ti-V System in Hydride Cycle and Synthesis of Their Hydrides in Self-propagating High-temperature Synthesis Regime[J]. J Alloys Compd,2011,509:S786-S789. | [31] | Suwarno S,Solberg J K,Maehlen J P,et al.The Effects of Rapid Solidification on Microstructure and hydrogen Sorption Properties of Binary BCC Ti-V Alloys[J]. J Alloys Compd,2014,582:540-546. | [32] | Suwarno S,Solberg J K,Maehlen J P,et al.Microstructure and Hydrogen Storage Properties of As-cast and Rapidly Solidified Ti-rich Ti-V Alloys[J]. Trans Nonfer Met Soc China,2012,22(8):1831-1838. | [33] | Yu X B,Wu Z,Xia B J,et al.Hydrogen Absorption Performance of Ti-V-based Alloys Surface Modified by Carbon Nanotubes[J]. Phys Lett A,2004,333(5):468-472. | [34] | Yu X B,Wu Z,Xia B J,et al.Improvement of Activation Performance of the Quenched Ti-V-based BCC Phase Alloys[J]. J Alloys Compd,2005,386(1):258-260. | [35] | Okada M,Kuriiwa T,Tamura T,et al.Ti-V-Cr bcc Alloys with High Protium Content[J]. J Alloys Compd,2002,330:511-516. | [36] | Okada M,Kuriiwa T,Tamura T,et al.Ti-V-Cr BCC Alloys System with High Protium Content[J]. Met Mater Int,2001,7(1):67-72. | [37] | Chen K C,Allen S M,Livingston J D. Microstructures of Two-phase Ti-Cr Alloys Containing the TiCr2 Laves Phase Intermetallic[J]. J Mater Res,1997,12(6):1472-1480. | [38] | Iba H,Akiba E. Hydrogen Absorption and Modulated Structure in Ti-V-Mn Alloys[J]. J Alloys Compd,1997,253:21-24. | [39] | Suwarno S,Solberg J K,Maehlen J P,et al.Influence of Cr on the hydrogen Storage Properties of Ti-rich Ti-V-Cr Alloys[J]. Int J Hydrogen Energy,2012,37(9):7624-7628. | [40] | Akiba E,Iba H. Hydrogen Absorption by Laves Phase Related BCC Solid Solution[J]. Intermetallics,1998,6(6):461-470. | [41] | Yu X B,Chen J Z,Wu Z,et al.Effect of Cr Content on Hydrogen Storage Properties for Ti-V-based BCC-phase Alloys[J]. Int J Hydrogen Energy,2004,29(13):1377-1381. | [42] | Mouri T,Iba H. Hydrogen-absorbing Alloys with a Large Capacity for a New Energy Carrier[J]. Mater Sci Eng,A,2002,329:346-350. | [43] | YAN Yigang,CHEN Yungui,ZHOU Xiaoxiao,et al.Structure and Hydrogen Absorption and Desorption Properties of (V30Ti35Cr25Fe10)97.5Si2.5[J]. Rare Met Mater Eng,2007,36(5):799-802(in Chinese). 严义刚,陈云贵,周潇潇,等. (V30Ti35Cr25Fe10)97.5Si2.5合金的结构与吸放氢性能[J]. 稀有金属材料与工程,2007,36(5):799-802. | [44] | Cho S W,Han C S,Park C N,et al.Hydrogen Storage Characteristics of Ti-Zr-Cr-V Alloys[J]. J Alloys Compd,1999,289(1):244-250. | [45] | Suwarno S,Solberg J K,Maehlen J P,et al.Non-isothermal Kinetics and in situ SR XRD Studies of hydrogen Desorption from Dihydrides of Binary Ti-V Alloys[J]. Int J Hydrogen Energy,2013,38(34):14704-14714. | [46] | Nakamura Y,Akiba E. New Hydride Phase with a Deformed FCC Structure in the Ti-V-Mn Solid Solution hydrogen System[J]. J Alloys Compd,2000,311(2):317-321. | [47] | Nakamura Y,Nakamura J,Sakaki K,et al.Hydrogenation Properties of Ti-V-Mn Alloys with a BCC Structure Containing High and Low Oxygen Concentrations[J]. J Alloys Compd,2011,509(5):1841-1847. | [48] | Akiba E,Nakamura Y. Hydrogenation Properties and Crystal Structures of Ti-Mn-V BCC Solid Solution Alloys[J]. Met Mater Int,2001,7(2):165-168. | [49] | Fei Y,Kong X,Wu Z,et al.In situ Neutron-diffraction Study of the Ti38V30Cr14Mn18 Structure During Hydrogenation[J]. J Power Sources,2013,241:355-358. | [50] | Lin H C,Lin K M,Wu K C,et al.Cyclic Hydrogen Absorption Desorption Characteristics of TiCrV and Ti0.8Cr1.2V Alloys[J]. Int J Hydrogen Energy,2007,32(18):4966-4972. | [51] | Wang J Y,Jeng R R,Nieh J K,et al.Comparing the Hydrogen Storage Alloys-TiCrV and Vanadium-rich TiCrMnV[J]. Int J Hydrogen Energy,2007,32(16):3959-3964. | [52] | Shashikala K,Banerjee S,Kumar A,et al.Improvement of Hydrogen Storage Properties of TiCrV Alloy by Zr Substitution for Ti[J]. Int J Hydrogen Energy,2009,34(16):6684-6689. | [53] | Churchard A J,Banach E,Borgschulte A,et al.A Multifaceted Approach to Hydrogen Storage[J]. Phys Chem Chem Phys,2011,13(38):16955-16972. | [54] | Cho S W,Han C S,Park C N,et al.The Hydrogen Storage Characteristics of Ti-Cr-V Alloys[J]. J Alloys Compd,1999,288(1):294-298. | [55] | Yan Y,Chen Y,Liang H,et al.Hydrogen Storage Properties of V30 Ti-Cr-Fe Alloys[J]. J Alloys Compd,2007,427(1):110-114. | [56] | Hang Z,Chen L,Xiao X,et al.The Effect of Cr Content on the Structural and Hydrogen Storage Characteristics of Ti10V80-xFe6Zr4Crx(x=0~14) Alloys[J]. J Alloys Compd,2010,493(1):396-400. | [57] | Cho S W,Enoki H,Akiba E. Effect of Fe Addition on Gydrogen Storage Characteristics of Ti0.16Zr0.05Cr0.22V0.57Alloy[J]. J Alloys Compd,2000,307(1):304-310. |
|