[1] Rico A,Geber-Corrêa R,Campos P S,et al. Effect of Parathion-Methyl on Amazonian Fish and Fresh Water Invertebrates: a Comparison of Sensitivity with Temperature Data[J]. Arch Environ Contam Oxicol,2010,58(3):765-767.[2] Tankiewicz M,Fenik J,Biziuk M. Determination of Organophosphorus and Organonitrogen Pesticides in Water Samples[J]. TrAC Trends Anal Chem,2010,29(9): 1050-1063.[3] Zhou Q,Xiao J,Wang W,et al. Determination of Atrazine and Simazine in Environmental Water Samples Using Multiwalled Carbon Nanotubes as the Adsorbents for Preconcentration Prior to High Performance Liquid Chromatography with Diode Array Detector[J]. Talanta,2006,68(4):1309-1315. [4] Qu L J,Zhang H,Zhu J H,et al. Rapid Determination of Organophosphorous Pesticides in Leeks by Gas Chromatography-triple Quadrupole Mass Spectrometry[J]. Food Chem,2010,122(1):327-332.[5] Sinha S N,Rao M V V,Vasudev K,et al. A Liquid Chromatography Mass Spectrometry-Based Method to Measure Organophosphorous Insecticide, Herbicide and Non-organophosphorous Pesticide in Grape and Apple Samples[J]. Food Control,2012,25(2):636-646.[6] Wei Y Y,Li Y,Qu Y H,et al. A Novel Biosensor Based on Photoelectron-Synergistic Catalysis for Flow-Injection Analysis System/Amperometric Detection of Organophosphorous Pesticides[J]. Anal Chim Acta,2009,643(1):13-18.[7] Chen S Z,Huang J,Du D,et al. Methyl Parathion Hydrolase Based Nanocomposite Biosensors for Highly Sensitive and Selective Determination of Methyl Parathion[J]. Biosens Bioelectron,2011,26(1):4320-4325.[8] Raghu P,Kumara Swamy B E,Madhusudana Reddy T. Sol-Gel Immobilized Biosensor for the Detection of Organophosphorous Pesticides:A Voltammetric Method[J]. Bioelectrochemistry,2012,83(11):19-24.[9] Wang Y Z,Qiu H X,Hu S Q,et al. A Novel Methyl Parathion Electrochemical Sensor Based on Acetylene Black-Chitosan Composite Film Modified Electrode[J]. Sens Actuators B,2010,147(2):587-592.[10] Wang C Y,You T Y,Tian J. Simultaneous Determination of Hydroquinone and Catechol with Poly(glutamic acid) Modified Electrode[J]. Anal Chem,2011,39(4):528-533.[11] Liu X,Luo L Q,Ding Y P,et al. Poly-Glutamic Acid Modified Carbon Nanotube-Doped Carbon Paste Electrode for Sensitive Detection of L-Tryptophan[J]. Bioelectrochemistry,2011,82(1):38-45.[12] Daniela P Santos,Marcio F Bergamini,Maria Valnice B Zanoni. Voltammetric Sensor for Amoxicillin Determination in Human Urine Using Polyglutamic Acid/glutaraldehyde Film[J]. Sens Actuators B,2008,133(2):398-403.[13] Zhang Y Z,Zhang K Y,Ma H Y. Electrochemical DNA Biosensors Based on Gold Nanoparticles/Cysteamine/Poly(glutamic acid) Modified Electrode[J]. Am J Biomed Sci,2009,1(2):115-125.[14] Zhang Y,Kang T F,Wan Y W. Gold Nanoparticles-Carbon Nanotubes Modified Sensor for Electrochemical Determination of Organophosphate Pesticides[J]. Microchim Acta,2009,165(10):307-311.[15] Kang T F,Wang F,Lu L P,et al, Methyl Parathion Sensors Based on Gold Nanoparticles and Nafion Film Modified Glassy Carbon Electrodes[J]. Sens Actuators B,2010,145(1):104-109.[16] Zeng Y B,Yu D J,Yu Y Y,et al. Differential Pulse Voltammetric Determination of Methyl Parathion Based on Multiwalled Carbon Nanotubes-Poly(acrylamide) Nanocomposite Film Modified Electrode[J]. J Hazard Mater,2012,217(5):315-322.[17] Parham H,Rahbar N. Square Wave Voltammetric Determination of Methyl Parathion Using ZrO2-Nanoparticles Modified Carbon Paste Electrode[J]. J Hazard Mater,2010,177(1):1077-1084.[18] Santos D P,Zanoni M V B,Bergamini M F,et al. Poly(glutamic Acid) Nanofibre Modified Glassy Carbon Electrode:Characterization by Atomic Force Microscopy, Voltammetry and Electrochemical Impedance[J]. Electrochim Acta,2008,53(11):3991-4000. |