应用化学 ›› 2026, Vol. 43 ›› Issue (1): 1-14.DOI: 10.19894/j.issn.1000-0518.250386
• 综合评述 •
周莉1,2, 杨庆星1,2, MATSVEYENKA-Yury3, ROGACHEV-Alexandr3, 冯婧1,2(
), 张洪杰1,2(
)
收稿日期:2025-10-09
接受日期:2025-11-18
出版日期:2026-01-01
发布日期:2026-01-26
通讯作者:
冯婧,张洪杰
基金资助:
Li ZHOU1,2, Qing-Xing YANG1,2, MATSVEYENKA-Yury3, ROGACHEV-Alexandr3, Jing FENG1,2(
), Hong-Jie ZHANG1,2(
)
Received:2025-10-09
Accepted:2025-11-18
Published:2026-01-01
Online:2026-01-26
Contact:
Jing FENG,Hong-Jie ZHANG
About author:hongjie@ciac.ac.cnSupported by:摘要:
金属卤化物长余辉材料作为一种新型的发光材料,日益受到广大科研工作者的关注。 该材料具有色彩可调、发射效率高且余辉超长等突出的发光性质,已经在指示标志、防伪、信息存储和X射线成像等诸多领域显示出应用的潜力。 因此,推进金属卤化物长余辉材料的性能开发与优化工作,具有极其重要的理论意义和实际应用价值。 本文综述了金属卤化物长余辉材料的代表性研究进展,归纳了调控金属卤化物长余辉发光性能的离子掺杂策略,并列举了其在防伪、信息加密与存储、X射线探测与成像等方面的应用,最后对该领域的研究现状和面临的挑战进行了深入剖析,并对其未来的发展进行了展望。
中图分类号:
周莉, 杨庆星, MATSVEYENKA-Yury, ROGACHEV-Alexandr, 冯婧, 张洪杰. 金属卤化物长余辉材料的研究进展[J]. 应用化学, 2026, 43(1): 1-14.
Li ZHOU, Qing-Xing YANG, MATSVEYENKA-Yury, ROGACHEV-Alexandr, Jing FENG, Hong-Jie ZHANG. Research Progress on Metal Halide Long Persistent Luminescence Materials[J]. Chinese Journal of Applied Chemistry, 2026, 43(1): 1-14.
图2 (A) Cs2Na0.2Ag0.8InCl6∶Yb3+晶体在996 nm处的2 h长余辉衰减曲线[30]; (B)不同NCs归一化的长余辉衰减曲线[32]; (C) Cs2NaScCl6∶Tb3+的长余辉衰减曲线[33]
Fig.2 (A) The long persistent luminescence decay curve at 996 nm of Cs2Na0.2Ag0.8InCl6∶Yb3+ crystal within 2 h[30]; (B) Normalized long persistent luminescence decay curves of different NCs[32]; (C) Long persistent luminescence decay curve of Cs2NaScCl6∶Tb3+ [33]
图3 (A) Cs2CdCl4∶0.2Mn2+的TL曲线和分解的高斯拟合曲线[36]; (B) Cs2NaScCl6∶1%Sb3+,Mn2+晶体的长余辉衰减曲线[37]; (C) Rb2Ag1-x Cu x Br3(x=0,0.01,0.04,0.12)的TL曲线[38]; (D) CsCdCl3和CsCdCl3∶1%Zr4+在不同环境温度下用254 nm紫外灯照射1 min后的归一化长余辉光谱[39]; (E) CsCdCl3:xZr4+(x=0和1%)在200和300 K时的色坐标[39]
Fig.3 (A) TL curve and decomposed Gaussian fitting curve of Cs2CdCl4∶0.2Mn2+[36]; (B) Long persistent luminescence decay curve of Cs2NaScCl6∶1%Sb3+,Mn2+ crystal[37]; (C) TL curves of Rb2Ag1-x Cu x Br3 (x=0, 0.01, 0.04, 0.12)[38]; (D) Normalized long persistent luminescence spectra of CsCdCl3 and CsCdCl3∶1%Zr4+ after being charged with a 254 nm ultraviolet lamp for 1 min at different ambient temperature[39]; (E) Chromaticity coordinates of CsCdCl3∶xZr4+ (x=0 and 1%) at 200 and 300 K[39]
图4 (A) X射线(50 kV)预辐照后Cs2NaInCl6∶3%Ag,3%Bi的长余辉衰减曲线[41]; (B) Cs2K0.6Ag0.4InCl6∶20%Mn晶体的长余辉衰减曲线。 插图是在355 nm激发下充能后的上升阶段,S和S′分别代表总的充电和释放的余辉能量[42]; (C) S′和S随碱金属离子掺杂摩尔分数的变化关系图[42]; (D)不同离子掺杂Cs3Cd2Cl7单晶的长余辉照片[44]
Fig.4 (A) Long persistent luminescence decay curve of Cs2NaInCl6∶3%Ag,3%Bi after pre-irradiated by X-ray (50 kV)[41]; (B) Long persistent luminescence decay curve of Cs2K0.6Ag0.4InCl6∶20%Mn crystal. The inset shows the rising stage after charging under 355 nm excitation. S and S′ represent the total charging energy and the released persistent luminescence energy, respectively[42]; (C) Plot of S′ and S against the doping mole fraction of alkali metal ions[42]; (D) Photographs of long persistent luminescence of Cs3Cd2Cl7 single crystals doped with different ions[44]
图5 (A)由CsCdCl3∶0.1%Sb3+和CsCdCl3∶1%Sb3+样品制作的字母“G”和数字“8”号照片[45]; (B)采用Cs2NaYb0.94Er0.06 NCs在黑色铁板上涂覆制备的“龙”形图案[46]; (C)在256和365 nm紫外光激发停止后不同延迟时刻拍摄的松鼠图案图像[47]
Fig.5 (A) Photographs of the letter “G” and the number “8” made from CsCdCl3∶0.1%Sb3+ and CsCdCl3∶1%Sb3+ samples[45]; (B) The “dragon”-shaped pattern fabricated by coating Cs2NaYb0.94Er0.06 NCs on a black iron plate[46]; (C) Squirrel pattern images under 256 and 365 nm ultraviolet light excitation, captured at different delay times after the cessation of excitation[47]
图6 (A)基于CsCdCl3样品的双模式信息存储-读取示意图[48]; (B) CsCdCl3∶Mn2+的信息存储与复杂加密应用[49]; (C)时间阀门控制的CsCdCl3∶x%Br-和CsCdCl3∶x%Sn2+用于多层次信息加密与存储[50]
Fig.6 (A) Schematic diagram of dual-mode information storage-readout based on CsCdCl3 sample[48]; (B) Information storage and complex encryption application of CsCdCl3∶Mn2+ [49]; (C) Time valve controlled CsCdCl3∶x%Br- and CsCdCl3∶x%Sn2+ for multilevel information encryption and storage[50]
图7 基于CsCdCl3∶5%Mn2+,0.1%Zr4+的X射线探测器用于成像示意图[54]。 (A)含CsCdCl3∶5%Mn2+,0.1%Zr4+晶体的PMMA聚合物薄膜在环境光与紫外光下的照片; (B)耳机的X射线成像图; (C)薄膜的MTF曲线及其分辨率; (D)采用含CsCdCl3∶5%Mn2+,0.1%Zr4+晶体的PDMS聚合物薄膜对三维曲面物体进行无损检测的示意图; (E)使用平板PDMS薄膜(5 cm×2.5 cm)对环空导电链路成像结果; (F)利用高柔性PDMS薄膜(5 cm×5 cm)对环空导电链路进行曲面成像结果。 图像读取温度为100 ℃
Fig.7 Schematic of X-ray detectors based on CsCdCl3∶5%Mn2+,0.1%Zr4+ for imaging [54]. (A) Photographs of PMMA-polymer film with CsCdCl3∶5%Mn2+,0.1%Zr4+ crystals under ambient light and ultraviolet light;(B) X-ray images of an earphone; (C) The MTF curve of the film and its resolution; (D) Schematic diagram showing nondestructive inspection of 3D curved objects enabled by the PDMS-polymer film with CsCdCl3∶5%Mn2+,0.1%Zr4+ crystals; (E) Imaging of annulus electric conduction link using the flat-panel PDMS-polymer film (5 cm×2.5 cm); (F) Curved planar reformation of the annulus electric conduction link using high flexible PDMS-polymer film (5 cm×5 cm). The image read out temperature is 100 ℃
图8 (A-F)使用UVC-余辉荧光体片灭活铜绿假单胞菌PAO1[56]。 (A)环境条件下、用X射线照射(B)2 min、(C)5 min、(D)10 min和(E)16 min的铜绿假单胞菌PAO1的共聚焦显微照片。 活细胞和死细胞分别显示绿色和红色; (F)铜绿假单胞菌PAO1存活率对给定荧光体片的X射线照射时间的依赖性
Fig.8 (A-F) Inactivation of Pseudomonas aeruginosa PAO1 using UVC-long persistence luminescence phosphor sheets[56]. Confocal micrographs of Pseudomonas aeruginosa PAO1 (A) under ambient conditions, irradiated with X-rays for (B) 2 min, (C) 5 min, (D) 10 min and (E) 16 min. Live cells and dead cells are shown in green and red, respectively; (F) Dependence of the survival rate of Pseudomonas aeruginosa PAO1 on the X-ray irradiation time of the given phosphor sheet
图9 肾盆腔注射Er-PLNPs(左)后活体小鼠输尿管的时间相关NIR-Ⅱ余辉(中)和NIR-Ⅱ PL(右)图像。 比例尺: 100 μm[58]
Fig.9 Time-dependent NIR-Ⅱ persistent luminescence (center) and NIR-Ⅱ PL (right) images of a ureter in a living mouse after renal pelvic injection of Er-PLNPs (left). Scale bar: 100 μm[58]
| [1] | HUANG K, LE N, WANG J S, et al. Designing next generation of persistent luminescence: recent advances in uniform persistent luminescence nanoparticles[J]. Adv Mater, 2022, 34(14): 2107962. |
| [2] | SUO H, WANG N, ZHANG Y, et al. Excitation-mode-selective emission through multiexcitonic states in a double perovskite single crystal[J]. Light Sci Appl, 2025, 14(1): 21. |
| [3] | SUO H, ZHANG X, WANG F. Controlling X-ray-activated persistent luminescence for emerging applications[J]. Trends Chem, 2022, 4(8): 726-738. |
| [4] | 文载盛, 张世有, 白欣, 等. 热释光动力学解析及其在长余辉材料研究中的应用[J]. 发光学报, 2024, 45(11): 1782-1793. |
| WEN Z S, ZHANG S Y, BAI X, et al. Thermoluminescence dynamics analysis and its application in study of persistent luminescence materials[J]. Chin J Lumin, 2024, 45(11): 1782-1793. | |
| [5] | GAO L, LIU Y, SU J, et al. Modulation of near-infrared afterglow luminescence in inorganic nanomaterials for biological applications[J]. Adv Mater, 2025, 37(16): 2419349. |
| [6] | LI P, HUA Y, YE R, et al. SrAl2O4 crystallite embedded inorganic medium with super-long persistent luminescence, thermoluminescence, and photostimulable luminescence for smart optical information storage[J]. Photonics Res, 2022, 10(2): 381-388. |
| [7] | DING S, GUO H, FENG P, et al. A new near-infrared long persistent luminescence material with its outstanding persistent luminescence performance and promising multifunctional application prospects[J]. Adv Opt Mater, 2020, 8(18): 2000097. |
| [8] | RAN Z, LIU J, ZHUANG J, et al. Multicolor afterglow from carbon dots: preparation and mechanism[J]. Small Methods, 2024, 8(1): 2301013. |
| [9] | YANG Z, CUI J, SUN Y, et al. Na-alloy tailored 3D/0D metal halide heterostructures enabling efficient charge transfer for color-integrated white scintillators[J]. Nat Commun, 2025, 16(1): 6909. |
| [10] | TIAN Y, YANG J, LIU Z, et al. Multistage stimulus-responsive room temperature phosphorescence based on host-guest doping systems[J]. Angew Chem Int Ed, 2021, 60(37): 20259-20263. |
| [11] | ZHU J, HU J, HU Q, et al. White light afterglow in carbon dots achieved via synergy between the room-temperature phosphorescence and the delayed fluorescence[J]. Small, 2022, 18(1): 2105415. |
| [12] | WANG Y Y, WANG Y, DU X W, et al. A zero-dimensional hybrid halide with superior water resistance for high-efficiency X-ray scintillation and solid-state lighting[J]. J Mater Chem C, 2025, 13(16): 8320-8327. |
| [13] | 楚献智, 庞然, 韩松林, 等. SrS∶Eu2+和SrAl2O4∶Eu2+,Dy3+长余辉发光粉封装发光二极管的光效[J]. 应用化学, 2025, 42(5): 701-711. |
| CHU X Z, PANG R, HAN S L, et al. Luminous efficacy of light emitting diode with SrS∶Eu2+ and SrAl2O4∶Eu2+,Dy3+ long afterglow phosphors[J]. Chin J Appl Chem, 2025, 42(5): 701-711. | |
| [14] | ZHAI B G, MA Q L, XIONG R, et al. Blue-green afterglow of BaAl2O4∶Dy3+ phosphors[J]. Mater Res Bull, 2016, 75: 1-6. |
| [15] | LIU Z, ZHAO L, YANG X, et al. Long persistent luminescence properties of NaBaScSi2O7∶Tb3+ and it′s applications above room temperature[J]. Chem Eng J, 2020, 401: 126119. |
| [16] | WANG Z, SONG Z, LIU Q. Orange super-long persistent luminescent materials: (Sr1- xBax)3SiO5∶Eu2+,Nb5+[J]. Mater Chem Front, 2021, 5(1): 333-340. |
| [17] | PAN L, DELAEY M, WANG Y, et al. Structural and optical properties of Cr ion-doped near-infrared long persistent luminescence silicogermanate phosphors with broad emission bands[J]. J Alloys Compd, 2024, 983: 173853. |
| [18] | WANG Y, WU S, LEI W, et al. A new method for preparing cubic-shaped Sr2MgSi2O7∶Eu2+,Dy3+ phosphors and the effect of sintering temperature[J]. Ceram Int, 2022, 48(4): 5397-5403. |
| [19] | DU Y, SETO T, LIU W, et al. Advanced effect of thesubstitution of Zn2+ on the solid-state synthesis of red phosphor, high temperature phase NaMgPO4∶Eu2+[J]. Adv Opt Mater, 2024, 12(10): 2302183. |
| [20] | LIAN H, LI Y, SHARAFUDEEN K, et al. Metal halide perovskites: highly thermotolerant metal halide perovskite solids[J]. Adv Mater, 2020, 32(28): 2070208. |
| [21] | LI H, LI K, LI Z, et al. Lanthanide-based metal halides prepared at room temperature by recrystallization method for X-ray imaging[J]. Light Sci Appl, 2025, 14(1): 195. |
| [22] | WANG H P, LI S, LIU X, et al. Low-dimensional metal halide perovskite photodetectors[J]. Adv Mater, 2021, 33(7): 2003309. |
| [23] | SHI J, WANG S, ZHAO Q, et al. Scalable fabrication of lead-free metal halide for indirect flat panel detector[J]. ACS Appl Mater Interfaces, 2025, 17(24): 34931-34950. |
| [24] | DU Y P, WANG Q, ZHU M Y, et al. Halogen engineering strategy-induced color-tunable room temperature phosphorescence in metal-organic halides[J]. Inorg Chem, 2024, 63(37): 17127-17133. |
| [25] | XIE Y, PENG J, QIN Q, et al. Long-persistent high-temperature phosphorescence of zero-dimensional metal halide hybrid for temperature-sensitive anticounterfeiting[J]. ACS Appl Nano Mater, 2024, 7(1): 1319-1326. |
| [26] | WANG J, CHEN N, WANG W, et al. Room-temperature persistent luminescence in metal halide perovskite nanocrystals for solar-driven CO2 bioreduction[J]. CCS Chem, 2023, 5(1): 164-175. |
| [27] | LIU Y, DI STASIO F, BI C, et al. Near-infrared light emitting metal halides: materials, mechanisms, and applications[J]. Adv Mater, 2024, 36(21): 2312482. |
| [28] | HU Y L, ZHU Y L, GU S Y, et al. Modulating the afterglow time of Mn2+ doped metal halides and applications in advanced optical information encryption[J]. Nanomaterials, 2025, 15(13): 1002. |
| [29] | YANG R, JI H, ZHAO D, et al. Modulation of trap distribution by optimizing Mn2+ doping in CsCdCl3 crystals toward enhanced afterglow performance[J]. Appl Phys Lett, 2024, 124(9): 091904. |
| [30] | LIU N, ZHENG W, SUN R, et al. Near-infrared afterglow and related photochromism from solution-grown perovskite crystal[J]. Adv Funct Mater, 2022, 32(9): 2110663. |
| [31] | LI J, ZHANG X, YU R, et al. Liquid nitrogen temperature multicolor persistent luminescence in a single host material[J]. Laser Photonics Rev, 2024, 18(10): 2400209. |
| [32] | ZHANG H, YANG Z, ZHAO L, et al. Long persistent luminescence from all-inorganic perovskite nanocrystals[J]. Adv Opt Mater, 2020, 8(18): 2000585. |
| [33] | WANG X, ZHANG X, YAN S, et al. Nearly-unity quantum yield and 12-hour afterglow from a transparent perovskite of Cs2NaScCl6∶Tb[J]. Angew Chem Int Ed, 2022, 61(40): e202210853. |
| [34] | ZHENG W, LI X, LIU N, et al. Solution-grown chloride perovskite crystal of red afterglow[J]. Angew Chem Int Ed, 2021, 60(46): 24450-24455. |
| [35] | HE S, QIANG Q, LANG T, et al. Highly stable orange-red long-persistent luminescent CsCdCl3∶Mn2+ perovskite crystal[J]. Angew Chem Int Ed, 2022, 61(48): e202208937. |
| [36] | LIU Y, YAN S, WANG T, et al. Achieving color-tunable long persistent luminescence in Cs2CdCl4 ruddlesden-popper phase perovskites[J]. Angew Chem Int Ed, 2023, 62(37): e202308420. |
| [37] | WANG X J, ZHENG W, ZHANG X Z, et al. Multicolor luminescence and afterglow from Cs2NaScCl6∶Sb3+,Mn2+ crystals[J]. Inorg Chem Front, 2024, 11(22): 8123-8129. |
| [38] | WANG S, LIU R, LI J, et al. Blue long afterglow and ultra broadband Vis-NIR emission from all-inorganic copper-doped silver halide single crystals[J]. Angew Chem Int Ed, 2024, 63(25): e202403927. |
| [39] | ZHU X, GU T, ZHAO L, et al. Temperature-dependent color-tunable afterglow in zirconium-doped CsCdCl3 perovskite for advanced anti-counterfeiting and thermal distribution detection[J]. Small, 2024, 20(11): 2306299. |
| [40] | QU B, ZHU C, HUANG G, et al. Blue-emitting long-persistent luminescence phosphor Pb2+-doped CsCdCl3[J]. J Lumin, 2025, 277: 120957. |
| [41] | YANG H, CHEN X, LU H, et al. Self-trapped excitons-based warm-white afterglow by room-temperature engineering toward intelligent multi-channel information system[J]. Adv Funct Mater, 2024, 34(4): 2311437. |
| [42] | SHI Y, ZHANG X, CHEN X, et al. Trap-tuning in afterglow perovskite crystals through alkali metal ion doping[J]. Chem Commun, 2022, 58(72): 10048-10051. |
| [43] | SHIONOYA S, KALLMANN H P, KRAMER B. Behavior of excited electrons and holes in zinc sulfide phosphors[J]. Phys Rev, 1961, 121(6): 1607-1619. |
| [44] | DAI G, MA Z, QIU Y, et al. Codoped 2D all-inorganic halide perovskite Cs3Cd2Cl7∶Sb3+∶Mn2+ with ultralong afterglow[J]. Inorg Chem, 2023, 62(20): 7906-7913. |
| [45] | GE S, PENG H, WEI Q, et al. Realizing color-tunable and time-dependent ultralong afterglow emission in antimony-doped CsCdCl3 metal halide for advanced anti-counterfeiting and information encryption[J]. Adv Opt Mater, 2023, 11(14): 2300323. |
| [46] | KONG B, PAN G, WANG M, et al. Superior multimodal luminescence in a stable single-host nanomaterial with large-scale synthesis for high-level anti-counterfeiting and encryption[J]. Adv Sci, 2025, 12(9): 2415473. |
| [47] | YE T, WANG Y, GAO Z, et al. Enhanced photoluminescence of cesium cadmium chloride via Cu doping for X-ray detection and anticounterfeiting applications[J]. ACS Appl Opt Mater, 2025, 3(4): 898-907. |
| [48] | YANG R, YANG D, WANG M, et al. High-efficiency and stable long-persistent luminescence from undoped cesium cadmium chlorine crystals induced by intrinsic point defects[J]. Adv Sci, 2023, 10(15): 2207331. |
| [49] | TANG Z, LIU R, CHEN J, et al. Highly efficient and ultralong afterglow emission with anti-thermal quenching from CsCdCl3∶Mn perovskite single crystals[J]. Angew Chem Int Ed, 2022, 61(51): e202210975. |
| [50] | CHEN T, YAN D. Full-color, time-valve controllable and Janus-type long-persistent luminescence from all-inorganic halide perovskites[J]. Nat Commun, 2024, 15(1): 5281. |
| [51] | SAKHATSKYI K, BHARDWAJ A, MATT G J, et al. A decade of lead halide perovskites for direct-conversion X-ray and gamma detection: technology readiness level and challenges[J]. Adv Mater, 2025, 37(27): 2418465. |
| [52] | HEISS W, BRABEC C. Perovskites target X-ray detection[J]. Nat Photonics, 2016, 10(5): 288-289. |
| [53] | WU H, GE Y, NIU G, et al. Metal halide perovskites for X-ray detection and imaging[J]. Matter, 2021, 4(1): 144-163. |
| [54] | ZHOU X, HAN K, WANG Y, et al. Energy-trapping management in X-ray storage phosphors for flexible 3D imaging[J]. Adv Mater, 2023, 35(16): 2212022. |
| [55] | WU S, YUAN L, CHEN G, et al. All-inorganic Mn2+-doped metal halide perovskite crystals for the late-time detection of X-ray afterglow imaging[J]. Nanoscale, 2023, 15(33): 13628-13634. |
| [56] | YANG Y M, LI Z Y, ZHANG J Y, et al. X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions[J]. Light Sci Appl, 2018, 7(1): 88. |
| [57] | SINGH H, BHARDWAJ S K, KHATRI M, et al. UVC radiation for food safety: an emerging technology for the microbial disinfection of food products[J]. Chem Eng J, 2021, 417: 128084. |
| [58] | PEI P, CHEN Y, SUN C, et al. X-ray-activated persistent luminescence nanomaterials for NIR-Ⅱ imaging[J]. Nat Nanotechnol, 2021, 16(9): 1011-1018. |
| [1] | 郑天程, 李月, 刘钰铃, 马永波, 李希艳. Cs2ZnCl4∶Ce3+,Mn2+的合成及其多模发光性能[J]. 应用化学, 2023, 40(12): 1613-1622. |
| [2] | 唐永鑫, 聂立武. 环氧树脂掺量对发光树脂透水混凝土性能的影响[J]. 应用化学, 2022, 39(11): 1665-1671. |
| [3] | 杨丽格, 周泊, 陆天虹, 蔡称心. 稀土磷酸盐纳米发光材料的研究进展[J]. 应用化学, 2009, 26(1): 1-6. |
| [4] | 魏雅姝, 张金朝, 宋鹂. Y2O2S∶Eu3+,Mg2+,Ti4+长余辉材料制备中烧结条件和助熔剂的影响[J]. 应用化学, 2005, 22(12): 1342-1346. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||