应用化学 ›› 2025, Vol. 42 ›› Issue (9): 1169-1179.DOI: 10.19894/j.issn.1000-0518.240342
• 综合评述 • 下一篇
郑晨旭1,2, 左晋松1,2, 狄跃忠2, 吕龙飞1,2, 耿佃桥1,2(
)
收稿日期:2024-10-25
接受日期:2025-06-09
出版日期:2025-09-01
发布日期:2025-09-28
通讯作者:
耿佃桥
基金资助:
Chen-Xu ZHENG1,2, Jin-Song ZUO1,2, Yue-Zhong DI2, Long-Fei LYU1,2, Dian-Qiao GENG1,2(
)
Received:2024-10-25
Accepted:2025-06-09
Published:2025-09-01
Online:2025-09-28
Contact:
Dian-Qiao GENG
About author:neugeng@163.comSupported by:摘要:
电化学沉积法是一种通过电流作用在溶液中沉积金属的方法,常用于制造金属薄膜涂层,具有广泛的应用前景。 然而,受工艺参数影响,其仍存在能耗高、电沉积效率低等问题。 目前,在不同电沉积体系下,尽管对工艺参数研究较多,但大多数情况是对单一参数分析,没有进行多参数耦合分析,也未形成统一的结论。 另外,该工艺还涉及槽内传质、传热、流动和二次反应等多个过程,机理复杂。 基于国内外文献,本文将电解能耗、电流效率和极板寿命作为分析指标,从浓度、极板间距和极板深度3个宏观角度,对其存在的机理及作用规律进行总结,并对目前研究中尚未深入的浓度场与流场耦合研究进行了分析,展望了不同工艺参数协同作用,为优化电沉积过程提供更好的思路。
中图分类号:
郑晨旭, 左晋松, 狄跃忠, 吕龙飞, 耿佃桥. 电化学沉积过程中工艺参数研究进展[J]. 应用化学, 2025, 42(9): 1169-1179.
Chen-Xu ZHENG, Jin-Song ZUO, Yue-Zhong DI, Long-Fei LYU, Dian-Qiao GENG. Research Progress on Process Parameters in Electrochemical Deposition[J]. Chinese Journal of Applied Chemistry, 2025, 42(9): 1169-1179.
| [1] | 周龙, 胡素丽. 电沉积制备耐蚀性涂层的研究现状及最新进展[J]. 贵州农机化, 2022(1): 33-36. |
| ZHOU L, HU S L. Research status and recent advances in corrosion-resistant coatings prepared by electrodeposition[J]. Guizhou Agric Mech, 2022(1): 33-36. | |
| [2] | DINAMANI M, KAMATH P V. Electrosynthesis of Mg(OH)2 coatings on stainless steel substrates[J]. J Appl Electrochem, 2004, 34(9): 899-902. |
| [3] | 阚洪敏, 孟媛媛, 崔世强, 等. 电沉积镍基复合镀层的研究进展[J]. 机械工程材料, 2021, 45(11): 1-7. |
| KAN H M, MENG Y Y, CUI S Q, et al. Research progress on electrodeposited nickel-based composite coatings[J]. Mater Mech Eng, 2021, 45(11): 1-7. | |
| [4] | 张嗣尧, 王美涵, 李梓嘉, 等. TX-100辅助电沉积氧化镍电致变色薄膜[J]. 功能材料, 2024, 55(5): 5232-5236. |
| ZHANG S Y, WANG M H, LI Z J, et al. TX-100 assisted electrodeposition of nickel oxide electrochromic thin films[J]. J Funct Mater, 2024, 55(5): 5232-5236. | |
| [5] | 王力楠, 苏伟涛, 郝小鹏. 碳纳米管涂层的电沉积制备及其红外辐射性能研究[J]. 杭州电子科技大学学报(自然科学版), 2024, 44(2): 65-70. |
| WANG L N, SU W T, HAO X P. Eletrodeposition and infrared radiation properties of carbon nanotube coatings[J]. J Hangzhou Dianzi Univ (Nat Sci ed), 2024, 44(2): 65-70. | |
| [6] | 吕莹, 张治安, 赖延清, 等. 室温下多孔Mg(OH)2薄膜的电沉积制备及表征[J]. 中国有色金属学报, 2013, 23(4): 1086-1091. |
| LÜ Y, ZHANG Z A, LAI Y Q, et al. Preparation and characterization of electrodeposited porous Mg(OH)2 thin films at room temperature[J]. Chin J Nonferrous Met, 2013, 23(4): 1086-1091. | |
| [7] | THERESE G H A, KAMATH P V. Electrochemical synthesis of metal oxides and hydroxides[J]. Chem Mater, 2000, 12(5): 1195-1204. |
| [8] | 田美玲. Al/TiB2+Ti4O7/PbO2层状复合阳极结构及性能仿真研究[D]. 昆明: 昆明理工大学, 2022. |
| TIAN M L. Simulation study on structure and performance of layered composite Al/TiB2+Ti4O7/PbO2 anode[D]. Kunming: Kunming University of Science and Technology, 2022. | |
| [9] | ZHITOMIRSKY I. Cathodic electrodeposition of ceramic and organoceramic materials fundamental aspects[J]. Adv Colloid Interface Sci, 2002, 97(1/2/3): 279-317. |
| [10] | 屠振密, 胡会利, 于元春, 等. 电沉积纳米晶材料制备方法及机理[J]. 电镀与环保, 2006(4): 4-8. |
| TU Z M, HU H L, YU Y C, et al. Preparation methods and mechanisms of electrodeposited nanocrystalline materials[J]. Electroplat Pollut Control, 2006(4): 4-8. | |
| [11] | 刘庆, 陆文雄, 印仁和. 电化学法制备纳米材料的研究现状[J]. 材料保护, 2004(2): 33-36, 64. |
| LIU Q, LU W X, YIN R H. Research status of electrochemical synthesis of nanomaterials[J]. Mater Prot, 2004(2): 33-36, 64. | |
| [12] | LI K, FAN Q, CHUAI H, et al. Revisiting chlor-alkali electrolyzers: from materials to devices[J]. Trans Tianjin Univ, 2021, 27(3): 202-216. |
| [13] | 公丕建. 基于NaClO2/电解NaCl盐水法的烟气脱硝性能及机理研究[D]. 北京: 北京科技大学, 2021. |
| GONG P J. Study on performance and mechanism of fuel gas denitration based on NaClO2/electrolyzed NaCl brine[D]. Beijing: Beijing University of Science and Technology, 2021. | |
| [14] | 王晓晴. 电解制备次氯酸钠消毒水的工艺及应用研究[D]. 北京: 北京化工大学, 2021. |
| WANG X Q. Study on the process and application of electrolytic preparation of sodium hypochlorite disinfectant[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
| [15] | 周杰, 顾伟伟, 张建, 等. 基于随机森林和改进竞争群算法的铜电解过程能耗优化[J]. 中国有色冶金, 2023, 52(1): 60-67. |
| ZHOU J, GU W W, ZHANG J, et al. Energy consumption optimization of copper electrolysis process based on random forest and improved competitive group algorithm[J]. China Nonferrous Metall, 2023, 52(1): 60-67. | |
| [16] | ALDAS K. Application of a two-phase flow model for hydrogen evolution in an electrochemical cell[J]. Appl Math Comput, 2004, 154(2): 507-519. |
| [17] | MATSUSHIMA H, FUKUNAKA Y, KURIBAYASHI K. Water electrolysis under microgravity Part Ⅱ description of gas bubble evolution phenomena[J]. Electrochim Acta, 2006, 51(20): 4190-4198. |
| [18] | OLIAII E, DESILETS M, LANTAGNE G. Effect of the design parameters on mass transfer and energy consumption inside a lithium electrolysis cell[J]. J Appl Electrochem, 2018, 48(6): 725-737. |
| [19] | OLIAII E, DESILETS M, LANTAGNE G. Numerical analysis of the effect of structural and operational parameters on electric and concentration fields of a lithium electrolysis cell[J]. J Appl Electrochem, 2017, 47(6): 711-726. |
| [20] | YU N, LI Y P, SHE W H, et al. Binder-free sodium zinc phosphate protection layer enabled dendrite-free Zn metal anode[J]. ACS Appl Mater Interfaces, 2022, 14(45): 50827-50835. |
| [21] | LI C P, XIE X S, LIANG S Q, et al. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries[J]. Energy Environ Mater, 2020, 3(2): 146-159. |
| [22] | MA L T, LI Q, YING Y R, et al. Toward practical high‐areal‐capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid‐ion conductor for stable zinc anodes[J]. Adv Mater, 2021, 33(12): 2007406. |
| [23] | MASLYN J A, BARAI P, MCENTUSH K D, et al. Plating and stripping of lithium metal stabilized by a block copolymer electrolyte: local current density measurement and modeling[J]. J Electrochem Soc, 2023, 170(7): 070510. |
| [24] | SAAB R, SULTAN R. Density, fractal angle, and fractal dimension in linear Zn electrodeposition morphology[J]. J Non-Equilib Thermodyn, 2005, 30(4): 321-336. |
| [25] | WANG F, BORODIN O, GAO T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nat Mater, 2018, 17(6): 543-549. |
| [26] | 邓信忠. 水氯镁石电沉积制备氢氧化镁及其改性研究[D]. 沈阳: 东北大学, 2017. |
| DENG X Z. Study on preparation of magnesium hydroxide from bischofite by electrodeposition method and modification of magnesium hydroxide[D]. Shenyang: Northeastern University, 2017. | |
| [27] | 张文正, 纪瑞, 崔熙, 等. 低能耗熔盐电解金属锂电解槽的开发及研究[J]. 有色金属工程, 2024, 14(2): 63-68. |
| ZHANG W Z, JI R, CUI X, et al. Development and research of low energy consumption molten salt electrolysis lithium metal electrolyzer[J]. Nonferrous Met Eng, 2024,14(2): 63-68. | |
| [28] | NIKOLOV K. Oxyhydrogen-an overview of the technology, application and production factors: 2023 18th Conference on Electrical Machines, Drives and Power Systems (ELMA)[C]. IEEE, 2023: 1-6. |
| [29] | OLIAII E, LITRICO G, DESILETS M, et al. Mass transport and energy consumption inside a lithium electrolysis cell[J]. Electrochim Acta, 2018, 290: 390-403. |
| [30] | 刘纯玮, 冯莉, 冯一纳. 无隔膜法电解制备次氯酸钠及其稳定性研究[J]. 化工学报, 2018, 69(12): 5246-5255. |
| LIU C W, FENG L, FENG Y N. Electrolytic preparation of sodium hypochlorite in undivided cell and its stability[J]. CIESC J, 2018, 69(12): 5246-5255. | |
| [31] | 桑建伟, 黄家榜, 刘畅, 等. 电化学氧化法处理氨氮废水的实验研究[J]. 环境科学导刊, 2023, 42(5): 42-44, 91. |
| SANG J W, HUANG J B, LIU C, et al. Experimental study on circulating treatment of ammonia nitrogen wastewater by electrochemical oxidation method[J]. Environ Sci Surv, 2023, 42(5): 42-44, 91. | |
| [32] | 李艺春. NaCl循环电解法脱除低温工业废气中NOx的研究[D]. 广东: 暨南大学, 2017. |
| LI Y C. Study on removal nitrogen oxides by recycle NaCl electrolysis under low temperature from industrial exhaust gases[D]. Guangdong: Jinan University, 2017. | |
| [33] | ZHANG N, CHENG F Y, LIU Y C, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery[J]. J Am Chem Soc, 2016, 138(39): 12894-12901. |
| [34] | FANG G Z, ZHOU J, PAN A Q, et al. Recent advances in aqueous zinc-ion batteries[J]. ACS Energy Lett, 2018, 3(10): 2480-2501. |
| [35] | SUO L M, HU Y S, LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nat Commun, 2013, 4: 1481. |
| [36] | LI H L, HU J, ZHOU P, et al. Optimization of operating conditions and structure parameters of zinc electrolytic cell based on numerical simulation for electrolyte flow[J]. Trans Nonferrous Met Soc China, 2014, 24(5): 1604-1609. |
| [37] | NAGAI N, TAKEUCHI M, KIMURA T, et al. Existence of optimum space between electrodes on hydrogen production by water electrolysis[J]. Int J Hydrogen Energy, 2003, 28(1): 35-41. |
| [38] | 于景奇. 电解海水法脱除船舶柴油机废气中NOx的实验研究[D]. 大连: 大连海事大学, 2017. |
| YU J Q. Study on NOx removal from marine diesel engine exhaust gas by electrolyzed seawater[D]. Dalian: Dalian Maritime University, 2017. | |
| [39] | 崔智春. 青海盐湖水氯镁石制备氢氧化镁/氧化镁的研究[D]. 沈阳:东北大学, 2020. |
| CUI Z C. Study on the preparation of Mg(OH)2/MgO from bischofite in qinghai salt lake[D]. Shenyang: Northeastern University, 2020. | |
| [40] | 邓亚东, 魏威, 雍兴跃, 等. 离子交换膜电解槽电解海水制氯技术的验证[J]. 中国舰船研究, 2021, 16(6): 216-224, 230. |
| DENG Y D, WEI W, YONG X Y, et al. Verification of chlorine production through seawater electrolysis using ion-exchange membrane electrolytic bath[J]. Chin J Ship Res, 2021, 16(6): 216-224, 230. | |
| [41] | LING J H, YANG H T, TAN Y H, et al. Review and prospects of numerical simulation in electrochemical metallurgy[J]. J Ind Eng Chem, 2024, 129: 24-37. |
| [42] | WU L L, LI W Y, LU G M. Multiple physical field coupling simulation of high current lithium electrolyzer in industry[J]. Can J Chem Eng, 2022, 101(5): 2948-2962. |
| [43] | WANG M Y, WANG Z, GONG X Z, et al. The intensification technologies to water electrolysis for hydrogen production-a review[J]. Renew Sustainable Energy Rev, 2014, 29: 573-588. |
| [44] | ABDELOUAHED L, HREIZ R, PONCIN S, et al. Hydrodynamics of gas bubbles in the gap of lantern blade electrodes without forced flow of electrolyte: experiments and CFD modelling[J]. Chem Eng Sci, 2014, 111: 255-265. |
| [45] | SUN Z, ZHAO Y, LU G M, et al. Novel method based on electric field simulation and optimization for designing an energy-saving magnesium electrolysis cell[J]. Ind Eng Chem Res, 2011, 50(10): 6161-6173. |
| [46] | ZHAN S Q, WANG J F, WANG Z T, et al. Computational fluid dynamics-population balance model simulation of effects of cell design and operating parameters on gas-liquid two-phase flows and bubble distribution characteristics in aluminum electrolysis cells[J]. JOM, 2018, 70(2): 229-236. |
| [47] | 黄运涛, 彭乔. 极距和流速对海水电解用阳极的影响[J]. 辽宁化工, 2005(11): 14-16. |
| HUANG Y T, PENG Q. Study on effects of electrode gap and velocity on positive pole in seawater electrolysis[J]. Liaoning Chem Ind, 2005(11): 14-16. | |
| [48] | 韩志涛, 于景奇, 杨少龙, 等. 电解海水对模拟船舶柴油机废气的脱硝应用[J]. 环境科学研究, 2017, 30(1): 144-151. |
| HAN Z T, YU J Q, YANG S L, et al. Application of electrolyzed seawater for NO removal from simulated marine diesel engine exhaust gas[J]. Res Environ Sci, 2017, 30(1): 144-151. | |
| [49] | LIU W, ZHOU D F, ZHAO Z B. Progress in application of energy-saving measures in aluminum reduction cells[J]. JOM, 2019, 71(7): 2420-2429. |
| [50] | ZHAO Q W, LIU C L, SUN Z, et al. Analysing and optimizing the electrolysis efficiency of a lithium cell based on the electrochemical and multiphase model[J]. R Soc Open Sci, 2020, 7(1): 191124. |
| [51] | LIU C L, SUN Z, LU G M, et al. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies[J]. R Soc Open Sci, 2018, 5(5): 171255. |
| [52] | GILLIAM R J, GRAYDON J W, KIRK D W, et al. A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures[J]. Int J Hydrogen Energy, 2007, 32(3): 359-364. |
| [53] | LIN M Y, HOURNG L W, KUO C W. The effect of magnetic force on hydrogen production efficiency in water electrolysis[J]. Int J Hydrogen Energy, 2012, 37(2): 1311-1320. |
| [54] | ARGUELLO M E, LABANDA N A, CALO V M, et al. Three-dimensional experimental-scale phase-field modeling of dendrite formation in rechargeable lithium-metal batteries[J]. J Energy Storage, 2023, 62: 106854. |
| [55] | MARTINEZ V J F, MONTERO O C, GARCIA L A M. Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from underground water[J]. J Hazard Mater, 2009, 172(2/3): 1617-1622. |
| [56] | HAKIZIMANA J N, GOURICH B, CHAFI M, et al. Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches[J]. Desalination, 2017, 404: 1-21. |
| [57] | LIU C L, SUN Z, LU G M, et al. Scale up design of a 300 kA magnesium electrolysis cell based on thermo electric mathematical models[J]. Can J Chem Eng, 2013, 92(7): 1197-1206. |
| [58] | LIU C L, SUN Z, LU G M, et al. Experimental and numerical investigation of two-phase flow patterns in magnesium electrolysis cell with non-uniform current density distribution[J]. Can J Chem Eng, 2015, 93(3): 565-579. |
| [59] | SUN Z, CAI L W, NI H O, et al. Coupled electro-thermal field in a high current electrolysis cell or liquid metal batteries[J]. R Soc Open Sci, 2018, 5(2): 171309. |
| [60] | LITRICO G, OLIAII E, VIEIRA C B, et al. Mass transfer study inside a Li production electrolysis cell based on a rigorous CFD analysis[J]. Int J Heat Fluid Flow, 2018, 5: 18-31. |
| [61] | MILLET P, RANJBARI A, DE G F, et al. Cell failure mechanisms in PEM water electrolyzers[J]. Int J Hydrogen Energy, 2012, 37(22): 17478-17487. |
| [62] | NISHIKAWA K, MORI T, NISHIDA T, et al. Li dendrite growth and Li+ ionic mass transfer phenomenon[J]. J Electroanal Chem, 2011, 661(1): 84-89. |
| [63] | YU H, CHEN J X, ZHOU W, et al. Mechanism analyses and optimization strategies for performance improvement in low-temperature water electrolysis systems via the perspective of mass transfer: a review[J]. Renew Sustainable Energy Rev, 2023, 183: 113394. |
| [64] | YANG H, FEY E O, TRIMM B D, et al. Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency[J]. J Power Sources, 2014, 272: 900-908. |
| [65] | DENG X T, YANG F Y, LI Y Y, et al. Quantitative study on gas evolution effects under large current density in zero-gap alkaline water electrolyzers[J]. J Power Sources, 2023, 555: 232378. |
| [66] | AMORES E, RODRIGUEZ J, CARRERAS C. Influence of operation parameters in the modeling of alkaline water electrolyzers for hydrogen production[J]. Int J Hydrogen Energy, 2014, 39(25): 13063-13078. |
| [1] | 冯谙,范利军,蔡陶,李文坡. 电沉积二氧化锰成核机理及其充放电性能[J]. 应用化学, 2015, 32(9): 1081-1087. |
| [2] | 朱传高, 王凤武. 纳米PbO/Ti电极催化还原偏硼酸锂制备硼氢化锂[J]. 应用化学, 2012, 29(10): 1194-1198. |
| [3] | 杨阿喜, 金根娣. 镍-氧化镍/铜-氧化亚铜复合纳米粒子修饰玻碳电极测定过氧化氢[J]. 应用化学, 2009, 26(12): 1466-1470. |
| [4] | 华缜, 靳正国, 武卫兵, 程志捷. Cu(SCN)2-水系电沉积制备CuSCN薄膜[J]. 应用化学, 2005, 22(2): 138-141. |
| [5] | 李超, 曹传宝, 朱鹤孙, 吕强, 黄福林. 阴极电沉积法制备高氮含量氮化碳薄膜[J]. 应用化学, 2004, 21(1): 36-40. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||