应用化学 ›› 2025, Vol. 42 ›› Issue (4): 552-564.DOI: 10.19894/j.issn.1000-0518.240309

• 研究论文 • 上一篇    下一篇

颗粒型钛基锂离子筛的制备及锂吸附性能

王珍珠1, 何争光1(), 和兵2, 梁柯1, 白亦薇1, 贾宇鑫1   

  1. 1.郑州大学生态与环境学院,郑州 450001
    2.河南省郑州生态环境监测中心,郑州 450046
  • 收稿日期:2024-09-29 接受日期:2025-03-21 出版日期:2025-04-01 发布日期:2025-05-14
  • 通讯作者: 何争光
  • 作者简介:13838172129@163.com
  • 基金资助:
    国家“十三五”科技重大专项水专项项目(2017ZX07602-001-002)

Preparation and Lithium Adsorption Performance of Particulate Titanium-Based Lithium Ion Sieve

Zhen-Zhu WANG1, Zheng-Guang HE1(), Bing HE2, Ke LIANG1, Yi-Wei BAI1, Yu-Xin JIA1   

  1. 1.College of Ecology and Environment,Zhengzhou University,Zhengzhou 450001,China
    2.Henan Province Zhengzhou Ecological Environment Monitoring Center,Zhengzhou 450046,China
  • Received:2024-09-29 Accepted:2025-03-21 Published:2025-04-01 Online:2025-05-14
  • Contact: Zheng-Guang HE
  • Supported by:
    the National Science and Technology Major Special Project for Water-related Issues of the 13th Five-Year Plan(2017ZX07602-001-002)

摘要:

钛基锂离子筛具有较强的Ti—O键使其具有结构稳定、耐酸碱性能好等优点,经常被用作盐湖提锂的吸附材料,但传统单一锂源合成的粉末锂离子筛存在吸附容量低、吸附速率低和循环性能差等问题。 采用Li2CO3和LiNO3作为混合锂源,与纳米TiO2通过高温固相法合成改性锂离子筛前驱体(LTO),酸洗后得到硝酸锂改性的粉末钛基锂离子筛(HTO-X),在HTO-X基础上又进行成型研究,合成了颗粒型钛基锂离子筛(PVB-HTO)。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和N2吸附-脱附等方法表征,探究了PVB-HTO的晶体结构、微观形貌和吸附机理,通过锂离子吸附实验,对其吸附和再生性能进行了研究。 结果表明: HTO-X具有更大的比表面积和孔体积,更高的吸附容量和更大的吸附速率,吸附过程为单分子层化学吸附; 使用0.2 mol/L盐酸酸洗后得到的改性HTO-X的Li+平衡吸附容量为35.82 mg/g,吸附速率较未改性前提高了75%,PVB-HTO的Li+平衡吸附容量为32.32 mg/g,经过20次循环后Li+吸附率仍保持在92%以上,钛的溶损率在0.15%以下。 改性后的锂离子筛(HTO-X和PVB-HTO)在锂离子吸附容量、吸附速率和循环性能方面均表现出显著优势,尤其是在卤水锂回收领域具有很大的应用潜力。

关键词: 钛基锂离子筛, 锂吸附容量, 吸附速率, 盐湖卤水

Abstract:

Titanium-based lithium ion sieves have strong Ti—O bonds, which give them the advantages of structural stability and good resistance to acid and alkali. They are often used as adsorbent materials for lithium extraction from salt lakes, but traditional powder lithium ion sieves synthesized from a single lithium source have problems such as low adsorption capacity, low adsorption rate, and poor cycling performance. Using Li2CO3 and LiNO3 as mixed lithium sources, the modified lithium ion sieve precursor (LTO) was synthesized through a high-temperature solid-phase method with nano-TiO2, nitric lithium modified powder titanium-based lithium-ion sieve (HTO-X) was obtained after acid washing.Further research on shaping was conducted based on HTO-X, and granular titanium-based lithium-ion sieve (PVB-HTO) was synthesized. The crystal structure, microscopic morphology and adsorption mechanism were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption methods. The adsorption and regeneration performance of PVB-HTO was studied through lithium-ion adsorption experiments. The results show that the HTO-X has larger specific surface area and pore volume, higher adsorption capacity and adsorption rate, and the adsorption process is single molecular layer chemisorption. After using 0.2 mol/L hydrochloric acid pickling, the Li+ equilibrium adsorption capacity of the modified HTO-X was 35.82 mg/g, the adsorption rate was 75% higher than that before modification, and the Li+ equilibrium adsorption capacity of PVB-HTO was 32.32 mg/g. After 20 cycles, the adsorption rate of Li+ remains above 92%, and the dissolution loss rate of titanium is below 0.15%. The modified lithium-ion sieves (HTO-X and PVB-HTO) demonstrated significant advantages in lithium-ion adsorption capacity, adsorption rate, and cycling performance, especially in the field of lithium recovery from brine.

Key words: Titanium-based lithium ion sieve, Lithium adsorption capacity, Adsorption rate, Salt lake brine

中图分类号: