应用化学 ›› 2023, Vol. 40 ›› Issue (9): 1277-1287.DOI: 10.19894/j.issn.1000-0518.230079
李钰炫1,2, 赵昱昊1,2, 代雨泽2, 姜敏2(), 张瑛1(), 周光远2()
收稿日期:
2023-03-29
接受日期:
2023-07-25
出版日期:
2023-09-01
发布日期:
2023-09-14
通讯作者:
姜敏,张瑛,周光远
基金资助:
Yu-Xuan LI1,2, Yu-Hao ZHAO1,2, Yu-Ze DAI2, Min JIANG2(), Ying ZHANG1(), Guang-Yuan ZHOU2()
Received:
2023-03-29
Accepted:
2023-07-25
Published:
2023-09-01
Online:
2023-09-14
Contact:
Min JIANG,Ying ZHANG,Guang-Yuan ZHOU
About author:
gyzhou@dicp.ac.cnSupported by:
摘要:
以2,5-呋喃二甲酸二甲酯(DMFD)、乙二醇(EG)为原料,原位添加扩链剂均苯四甲酸二酐(PMDA)、纳米二氧化钛(TiO2)、硅藻土(DE),以钛酸四丁酯为催化剂,采用酯交换-熔融缩聚法制备聚2,5-呋喃二甲酸乙二醇酯(PEF)/TiO2/DE复合材料。通过核磁共振波谱仪(NMR)、傅里叶变换衰减全反射红外光谱仪(ATR-FTIR)、X射线衍射仪(XRD)和热重分析仪(TGA)等技术手段对其结构、热学性能、力学性能、气体渗透性能及紫外屏蔽性能进行表征。结果表明,PEF/TiO2/DE复合材料被成功制备,且TiO2及DE均为物理掺杂。DE粒子在PEF/TiO2/DE复合材料内部分散良好。所有聚酯粉末为无定形聚集态结构。与PEF相比,PEF/TiO2/DE复合材料的5%质量损失温度(Td,5%)、分解速率最快温度(Tdmax)分别提升12.1 ℃和8.4 ℃。PEF/TiO2/DE复合材料的拉伸模量及抗冲击强度最高分别达到2657 MPa和3.2×104 J/m2。纳米TiO2和DE的引入调控了PEF/TiO2/DE复合材料对CO2、O2的渗透性,CO2屏障改善系数(
中图分类号:
李钰炫, 赵昱昊, 代雨泽, 姜敏, 张瑛, 周光远. 聚2,5-呋喃二甲酸乙二醇酯/纳米二氧化钛/硅藻土复合材料的制备和表征[J]. 应用化学, 2023, 40(9): 1277-1287.
Yu-Xuan LI, Yu-Hao ZHAO, Yu-Ze DAI, Min JIANG, Ying ZHANG, Guang-Yuan ZHOU. Preparation and Characterization of Poly(ethylene 2,5-furandicarboxylate)/TiO2 Nanoparticles/ Diatomaceous Earth Composites[J]. Chinese Journal of Applied Chemistry, 2023, 40(9): 1277-1287.
Samples | The median particle size of nano TiO2/nm | The addition amount of nano TiO2/‰ | The median particle size of DE/μm | The addition amount of DE/‰ |
---|---|---|---|---|
PEF/TiO2/DE3.5,3 | 60 | 3 a | 3.5 | 3 b |
PEF/TiO2/DE7,3 | 60 | 3 | 7 | 3 |
PEF/TiO2/DE22,3 | 60 | 3 | 22 | 3 |
PEF/TiO2/DE40,1 | 60 | 3 | 40 | 1 |
PEF/TiO2/DE40,3 | 60 | 3 | 40 | 3 |
PEF/TiO2/DE40,5 | 60 | 3 | 40 | 5 |
PEF/TiO2/DE40,7 | 60 | 3 | 40 | 7 |
PEF/TiO2/DE40,9 | 60 | 3 | 40 | 9 |
PEF/TiO2/DE40,10 | 60 | 3 | 40 | 10 |
表 1 PEF/TiO2/DE复合材料中纳米TiO2和DE的中位粒径及添加量
Table 1 The median particle size and the addition amount of nano TiO2 and DE in PEF/TiO2/DE composites
Samples | The median particle size of nano TiO2/nm | The addition amount of nano TiO2/‰ | The median particle size of DE/μm | The addition amount of DE/‰ |
---|---|---|---|---|
PEF/TiO2/DE3.5,3 | 60 | 3 a | 3.5 | 3 b |
PEF/TiO2/DE7,3 | 60 | 3 | 7 | 3 |
PEF/TiO2/DE22,3 | 60 | 3 | 22 | 3 |
PEF/TiO2/DE40,1 | 60 | 3 | 40 | 1 |
PEF/TiO2/DE40,3 | 60 | 3 | 40 | 3 |
PEF/TiO2/DE40,5 | 60 | 3 | 40 | 5 |
PEF/TiO2/DE40,7 | 60 | 3 | 40 | 7 |
PEF/TiO2/DE40,9 | 60 | 3 | 40 | 9 |
PEF/TiO2/DE40,10 | 60 | 3 | 40 | 10 |
图1 PEF、PEF/TiO2和PEF/TiO2/DE复合材料的ATR-FTIR谱图
Fig.1 ATR-FTIR patterns of PEF, PEF/TiO2 and PEF/TiO2/DE compositesNote: a. PEF; b. PEF/TiO2; c. PEF/TiO2/DE3.5,3; d. PEF/TiO2/DE7,3; e. PEF/TiO2/DE22,3; f. PEF/TiO2/DE40,1; g. PEF/TiO2/DE40,3; h. PEF/TiO2/DE40,10
图2 PEF/TiO2和PEF/TiO2/DE复合材料的1H NMR谱图
Fig.2 1H NMR patterns of PEF/TiO2 and PEF/TiO2/DE compositesNote: a. PEF/TiO2; b PEF/TiO2/DE3.5,3; c. PEF/TiO2/DE7,3; d. PEF/TiO2/DE22,3; e. PEF/TiO2/DE40,1; f. PEF/TiO2/DE40,3; g. PEF/TiO2/DE40,10
Samples | Reduced viscosity | The 2nd heating of DSC | TGA | |||
---|---|---|---|---|---|---|
ηsp/C/(dL·g-1) | Tg/℃ | Tm/℃ | Td,5%/℃ | Tdmax/℃ | R600/% | |
PEF | 0.20 | 86.5 | 216.8 | 369.4 | 416.1 | 14.0 |
PEF/TiO2 | 0.89 | 88.7 | 207.3 | 372.0 | 415.5 | 15.7 |
PEF/TiO2/DE3.5,3 | 0.66 | 87.1 | - | 377.8 | 421.6 | 14.5 |
PEF/TiO2/DE7,3 | 0.77 | 87.0 | - | 381.5 | 422.8 | 15.4 |
PEF/TiO2/DE22,3 | 0.80 | 87.1 | - | 375.2 | 421.0 | 14.0 |
PEF/TiO2/DE40,1 | 0.76 | 86.0 | 209.8 | 377.8 | 421.8 | 15.0 |
PEF/TiO2/DE40,3 | 0.88 | 86.3 | - | 377.0 | 424.5 | 14.7 |
PEF/TiO2/DE40,5 | 0.78 | 86.5 | 210.0 | 378.8 | 424.1 | 15.2 |
PEF/TiO2/DE40,7 | 0.80 | 87.0 | - | 375.0 | 419.6 | 15.3 |
PEF/TiO2/DE40,9 | 0.75 | 85.5 | - | 375.5 | 419.5 | 15.3 |
PEF/TiO2/DE40,10 | 0.70 | 86.8 | 206.5 | 375.3 | 417.0 | 15.8 |
表 2 PEF、PEF/TiO2及PEF/TiO2/DE复合材料的ηsp/C、DSC及TGA结果
Table 2 ηsp/C, DSC and TGA results of PEF, PEF/TiO2 and PEF/TiO2/DE composites
Samples | Reduced viscosity | The 2nd heating of DSC | TGA | |||
---|---|---|---|---|---|---|
ηsp/C/(dL·g-1) | Tg/℃ | Tm/℃ | Td,5%/℃ | Tdmax/℃ | R600/% | |
PEF | 0.20 | 86.5 | 216.8 | 369.4 | 416.1 | 14.0 |
PEF/TiO2 | 0.89 | 88.7 | 207.3 | 372.0 | 415.5 | 15.7 |
PEF/TiO2/DE3.5,3 | 0.66 | 87.1 | - | 377.8 | 421.6 | 14.5 |
PEF/TiO2/DE7,3 | 0.77 | 87.0 | - | 381.5 | 422.8 | 15.4 |
PEF/TiO2/DE22,3 | 0.80 | 87.1 | - | 375.2 | 421.0 | 14.0 |
PEF/TiO2/DE40,1 | 0.76 | 86.0 | 209.8 | 377.8 | 421.8 | 15.0 |
PEF/TiO2/DE40,3 | 0.88 | 86.3 | - | 377.0 | 424.5 | 14.7 |
PEF/TiO2/DE40,5 | 0.78 | 86.5 | 210.0 | 378.8 | 424.1 | 15.2 |
PEF/TiO2/DE40,7 | 0.80 | 87.0 | - | 375.0 | 419.6 | 15.3 |
PEF/TiO2/DE40,9 | 0.75 | 85.5 | - | 375.5 | 419.5 | 15.3 |
PEF/TiO2/DE40,10 | 0.70 | 86.8 | 206.5 | 375.3 | 417.0 | 15.8 |
图3 PEF、PEF/TiO2和PEF/TiO2/DE复合材料的SEM谱图
Fig.3 SEM patterns of PEF, PEF/TiO2 and PEF/TiO2/DE compositesNote: A. PEF; B. PEF/TiO2; C. PEF/TiO2/DE3.5,3; D. PEF/TiO2/DE7,3; E. PEF/TiO2/DE22,3; F. PEF/TiO2/DE40,1; G. PEF/TiO2/DE40,3; H. PEF/TiO2/DE40,7
图4 PEF/TiO2和PEF/TiO2/DE复合材料的XRD谱图
Fig.4 XRD patterns of PEF/TiO2 and PEF/TiO2/DE compositesNote: a. 60 nm-TiO2; b. PEF/TiO2; c. PEF/TiO2/DE3.5,3; d. PEF/TiO2/DE7,3; e. PEF/TiO2/DE22,3; f. PEF/TiO2/DE40,1; g. PEF/TiO2/DE40,3; h. PEF/TiO2/DE40,5; i. PEF/TiO2/DE40,7; g. PEF/TiO2/DE40,9; k. PEF/TiO2/DE40,10; l. DE
Tensile modulus/MPa | Tensile strength/MPa | Elongation at break/% | 10-3 Impact strength/(J·m-2) | |
---|---|---|---|---|
PEF[ | 1 532 | 73 | 6.0 | 7.2 |
PEF/TiO2 | 2 485 | 74 | 4.0 | 21.3 |
PEF/TiO2/DE3.5,3 | 2 305 | 43 | 2.1 | 15.8 |
PEF/TiO2/DE7,3 | 2 430 | 51 | 2.4 | 22.7 |
PEF/TiO2/DE22,3 | 2 501 | 50 | 2.3 | 26.6 |
PEF/TiO2/DE40,1 | 2 457 | 58 | 2.0 | 22.7 |
PEF/TiO2/DE40,3 | 2 560 | 59 | 2.6 | 32.0 |
PEF/TiO2/DE40,5 | 2 466 | 60 | 2.3 | 31.0 |
PEF/TiO2/DE40,7 | 2 657 | 65 | 2.9 | 28.6 |
PEF/TiO2/DE40,9 | 2 599 | 62 | 2.0 | 29.5 |
PEF/TiO2/DE40,10 | 2 452 | 63 | 3.2 | 14.5 |
表3 PEF、PEF/TiO2及PEF/TiO2/DE复合材料的力学性能
Table 3 Mechanical properties data of PEF, PEF/TiO2 and PEF/TiO2/DE composites
Tensile modulus/MPa | Tensile strength/MPa | Elongation at break/% | 10-3 Impact strength/(J·m-2) | |
---|---|---|---|---|
PEF[ | 1 532 | 73 | 6.0 | 7.2 |
PEF/TiO2 | 2 485 | 74 | 4.0 | 21.3 |
PEF/TiO2/DE3.5,3 | 2 305 | 43 | 2.1 | 15.8 |
PEF/TiO2/DE7,3 | 2 430 | 51 | 2.4 | 22.7 |
PEF/TiO2/DE22,3 | 2 501 | 50 | 2.3 | 26.6 |
PEF/TiO2/DE40,1 | 2 457 | 58 | 2.0 | 22.7 |
PEF/TiO2/DE40,3 | 2 560 | 59 | 2.6 | 32.0 |
PEF/TiO2/DE40,5 | 2 466 | 60 | 2.3 | 31.0 |
PEF/TiO2/DE40,7 | 2 657 | 65 | 2.9 | 28.6 |
PEF/TiO2/DE40,9 | 2 599 | 62 | 2.0 | 29.5 |
PEF/TiO2/DE40,10 | 2 452 | 63 | 3.2 | 14.5 |
CO2 permeability coefficient | O2 permeability coefficient | CO2/O2 | |||
---|---|---|---|---|---|
PET[ | 0.13 | 1 | 0.06 | 1 | 2.17 |
PLA[ | 1.0 | 0.13 | 0.25 | 0.24 | 4.00 |
PEF[ | 0.01 | 13 | 0.011 | 5.45 | 0.91 |
PEF/TiO2 | 0.043 | 3.02 | 0.044 | 1.36 | 0.98 |
PEF/TiO2/DE3.5,3 | 0.095 | 1.37 | 0.086 | 0.70 | 1.10 |
PEF/TiO2/DE7,3 | 0.074 | 1.76 | 0.081 | 0.74 | 0.91 |
PEF/TiO2/DE22,3 | 0.063 | 2.06 | 0.079 | 0.76 | 0.80 |
PEF/TiO2/DE40,1 | 0.037 | 3.51 | 0.038 | 1.58 | 0.97 |
PEF/TiO2/DE40,3 | 0.063 | 2.06 | 0.067 | 0.90 | 0.94 |
PEF/TiO2/DE40,5 | 0.032 | 4.06 | 0.032 | 1.88 | 1.00 |
PEF/TiO2/DE40,7 | 0.028 | 4.64 | 0.029 | 2.07 | 0.97 |
PEF/TiO2/DE40,9 | 0.055 | 2.36 | 0.044 | 1.36 | 1.25 |
PEF/TiO2/DE40,10 | 0.043 | 3.02 | 0.041 | 1.46 | 1.05 |
表4 PEF、PEF/TiO2及PEF/TiO2/DE复合材料的PCO2、PO2、BIFCO2、BIFO2及CO2/O2
Table 4 PCO2, PO2, BIFCO2,BIFO2 and CO2/O2 of PEF, PEF/TiO2 and PEF/TiO2/DE composites
CO2 permeability coefficient | O2 permeability coefficient | CO2/O2 | |||
---|---|---|---|---|---|
PET[ | 0.13 | 1 | 0.06 | 1 | 2.17 |
PLA[ | 1.0 | 0.13 | 0.25 | 0.24 | 4.00 |
PEF[ | 0.01 | 13 | 0.011 | 5.45 | 0.91 |
PEF/TiO2 | 0.043 | 3.02 | 0.044 | 1.36 | 0.98 |
PEF/TiO2/DE3.5,3 | 0.095 | 1.37 | 0.086 | 0.70 | 1.10 |
PEF/TiO2/DE7,3 | 0.074 | 1.76 | 0.081 | 0.74 | 0.91 |
PEF/TiO2/DE22,3 | 0.063 | 2.06 | 0.079 | 0.76 | 0.80 |
PEF/TiO2/DE40,1 | 0.037 | 3.51 | 0.038 | 1.58 | 0.97 |
PEF/TiO2/DE40,3 | 0.063 | 2.06 | 0.067 | 0.90 | 0.94 |
PEF/TiO2/DE40,5 | 0.032 | 4.06 | 0.032 | 1.88 | 1.00 |
PEF/TiO2/DE40,7 | 0.028 | 4.64 | 0.029 | 2.07 | 0.97 |
PEF/TiO2/DE40,9 | 0.055 | 2.36 | 0.044 | 1.36 | 1.25 |
PEF/TiO2/DE40,10 | 0.043 | 3.02 | 0.041 | 1.46 | 1.05 |
图5 PEF、PEF/TiO2和PEF/TiO2/DE复合材料的紫外-可见光透过率曲线
Fig.5 UV-Vis transmittance spectra of PEF, PEF/TiO2 and PEF/TiO2/DE compositesNote: a. PEF; b. PEF/TiO2; c. PEF/TiO2/DE 7,3
PEF | PEF/TiO2 | PEF/TiO2/DE3.5,3 | PEF/TiO2/DE 7,3 | PEF/TiO2/DE 22,3 | PEF/TiO2/DE40,3 | |
---|---|---|---|---|---|---|
UVA/% | 45.38 | 83.85 | 84.58 | 88.04 | 84.25 | 86.00 |
UVB/% | 97.18 | 99.89 | 99.86 | 99.89 | 99.87 | 99.86 |
PEF/TiO2/DE 40,1 | PEF/TiO2/DE40,3 | PEF/TiO2DE40,5 | PEF/TiO2/DE40,7 | PEF/TiO2/DE40,9 | PEF/TiO2/DE40,10 | |
UVA/% | 84.58 | 86.00 | 86.69 | 85.58 | 86.05 | 84.81 |
UVB/% | 99.90 | 99.86 | 99.90 | 99.90 | 99.91 | 99.90 |
表 5 PEF、PEF/TiO2及PEF/TiO2/DE复合材料在UVA与UVB段的紫外屏蔽率
Table 5 UV blocking parameters in UVA and UVB of PEF, PEF/TiO2 and PEF/TiO2/DE composites
PEF | PEF/TiO2 | PEF/TiO2/DE3.5,3 | PEF/TiO2/DE 7,3 | PEF/TiO2/DE 22,3 | PEF/TiO2/DE40,3 | |
---|---|---|---|---|---|---|
UVA/% | 45.38 | 83.85 | 84.58 | 88.04 | 84.25 | 86.00 |
UVB/% | 97.18 | 99.89 | 99.86 | 99.89 | 99.87 | 99.86 |
PEF/TiO2/DE 40,1 | PEF/TiO2/DE40,3 | PEF/TiO2DE40,5 | PEF/TiO2/DE40,7 | PEF/TiO2/DE40,9 | PEF/TiO2/DE40,10 | |
UVA/% | 84.58 | 86.00 | 86.69 | 85.58 | 86.05 | 84.81 |
UVB/% | 99.90 | 99.86 | 99.90 | 99.90 | 99.91 | 99.90 |
1 | SOUSA A F, PATRÍCIO R, TERZOPOULOU Z, et al. Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts[J]. Green Chem, 2021, 23(22): 8795-8820. |
2 | LOOS K, ZHANG R, PEREIRA I, et al. A perspective on PEF synthesis, properties, and end-life[J]. Front Chem, 2020, 8: 585. |
3 | 曹友錋, 庞烜, 项盛, 等. 溶剂诱导的聚乳酸/聚乳酸衍生物共结晶行为[J]. 应用化学, 2021, 38(1): 60-68. |
CAO Y P, PANG X, XIANG S, et al. Solution-induced co-crystallization in poly(lactic acid)/substituted poly(lactic acid) blends[J]. Chin J Appl Chem, 2021, 38(1): 60-68. | |
4 | 马轶莲, 胡浩东, 丁营利, 等. 羟基功能化离聚物与含环氧基团增容剂协同改性聚乳酸[J]. 应用化学, 2022, 39(12): 1870-1879. |
MA Y L, HU H D, DING Y L, et al. Modification of polylactic acid by reactive blending with functionalized imidazolium-based ionomers and epoxy-containing additives[J]. Chin J Appl Chem, 2022, 39(12): 1870-1879. | |
5 | BURGESS S K, LEISEN J E, KRAFTSCHIK B E, et al. Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate)[J]. Macromolecules, 2014, 47(4): 1383-1391. |
6 | ARAUJO C F, NOLASCO M M, RIBEIRO-CLARO P J A, et al. Inside PEF: chain conformation and dynamics in crystalline and amorphous domains[J]. Macromolecules, 2018, 51(9): 3515-3526. |
7 | STOCLET G, GOBIUS DU SART G, YENIAD B, et al. Isothermal crystallization and structural characterization of poly(ethylene 2,5-furanoate)[J]. Polymer, 2015, 72:165-176. |
8 | ZHAO M, ZHANG C, YANG F, et al. Gas barrier properties of furan-based polyester films analyzed experimentally and by molecular simulations[J]. Polymer, 2021, 233:124200. |
9 | SUN L, WANG J, MAHMUD S, et al. New insight into the mechanism for the excellent gas properties of poly(ethylene 2,5-furandicarboxylate) (PEF): role of furan ring′s polarity[J]. Eur Polym J, 2019, 118: 642-650. |
10 | XIE H, MENG H, WU L, et al. In-situ synthesis, thermal and mechanical properties of biobased poly(ethylene 2,5-furandicarboxylate)/montmorillonite (PEF/MMT) nanocomposites[J]. Eur Polym J, 2019, 121: 109266. |
11 | ACHILIAS D S, CHONDROYIANNIS A, NERANTZAKI M, et al. Solid state polymerization of poly(ethylene furanoate) and its nanocomposites with SiO2 and TiO2[J]. Macromol Mater Eng, 2017, 302(7): 1700012. |
12 | CODOU A, GUIGO N, VAN BERKEL J G, et al. Preparation and crystallization behavior of poly(ethylene 2,5-furandicarboxylate)/cellulose composites by twin screw extrusion[J]. Carbohydr Polym, 2017, 174: 1026-1033. |
13 | CODOU A, GUIGO N, VAN BERKEL J G, et al. Preparation and characterization of polyethylene 2,5-furandicarboxylate/nanocrystalline cellulose composites via solvent casting[J]. J Poly Eng, 2017, 37(9): 869-878. |
14 | MARTINO L, NIKNAM V, GUIGO N, et al. Morphology and thermal properties of novel clay-based poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites[J]. RSC Adv, 2016, 6(64): 59800-59807. |
15 | MARTINO L, GUIGO N, VAN BERKEL J G, et al. Influence of organically modified montmorillonite and sepiolite clays on the physical properties of bio-based poly(ethylene 2,5-furandicarboxylate)[J]. Composites Part B, 2017, 110: 96-105. |
16 | LOTTI N, MUNARI A, GIGLI M, et al. Thermal and structural response of in situ prepared biobased poly(ethylene 2,5-furan dicarboxylate) nanocomposites[J]. Polymer, 2016, 103:288-298. |
17 | DOBROSIELSKA M, DOBRUCKA R, BRZAKALSKI D, et al. Influence of diatomaceous earth particle size on mechanical properties of PLA/diatomaceous earth composites[J]. Materials, 2022, 15(10): 3607. |
18 | ZGLOBICKA I, JOKA-YILDIZ M, MOLAK R, et al. Poly(lactic acid) matrix reinforced with diatomaceous earth[J]. Materials, 2022, 15(18): 6210. |
19 | CACCIOTTI I, MORI S, CHERUBINI V, et al. Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging[J]. Int J Biol Macromol, 2018, 112: 567-575. |
20 | XU Y, SHENG J, YIN X, et al. Functional modification of breathable polyacrylonitrile/polyurethane/TiO2 nanofibrous membranes with robust ultraviolet resistant and waterproof performance[J]. J Colloid Interface Sci, 2017, 508: 508-516. |
21 | WU W, LIU T, DENG X, et al. Ecofriendly UV-protective films based on poly(propylene carbonate) biocomposites filled with TiO2 decorated lignin[J]. Int J Biol Macromol, 2019, 126: 1030-1036. |
22 | GUTIERREZ J, TERCJAK A, GOMEZ-HERMOSO-DE-MENDOZA J. Transparent and flexible cellulose triacetate-TiO2 nanoparticles with conductive and UV-shielding properties[J]. J Phy Chem C, 2020, 124(7): 4242-4251. |
23 | KUMAR S, SARITA, NEHRA M, et al. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications[J]. Prog Polym Sci, 2018, 80: 1-38. |
24 | MESGARI M, AALAMI A H, SAHEBKAR A. Antimicrobial activities of chitosan/titanium dioxide composites as a biological nanolayer for food preservation: a review[J]. Int J Biol Macromol, 2021, 176: 530-539. |
25 | 王佳赫, 刘大勇, 刘伟, 等. 纳米TiO2光催化抗菌应用的研究进展[J]. 应用化学, 2022, 39(4): 629-646. |
WANG J H, LIU D Y, LIU W, et al. Research progress on photocatalytic antibacterial application of TiO2 nano materials[J]. Chin J Appl Chem, 2022, 39(4): 629-646. | |
26 | PANDEY V, SEESE M, MAIA J M, et al. Thermo-rheological analysis of various chain extended recycled poly(ethylene terephthalate)[J]. Polym Eng Sci, 2020, 60(10): 2511-2516. |
27 | ANKOLA D D, RAVI KUMAR M N V, CHIELLINI F, et al. Multiblock copolymers of lactic acid and ethylene glycol containing periodic side-chain carboxyl groups: synthesis, characterization, and nanoparticle preparation[J]. Macromolecules, 2009, 42(19): 7388-7395. |
28 | KAEWKLIN P, SIRIPATRAWAN U, SUWANAGUL A, et al. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit[J]. Int J Biol Macromol, 2018, 112: 523-529. |
29 | LIU S, ZHANG B, WU Y, et al. Effects of diatomaceous earth addition on the microstructure and gas permeation of carbon molecular sieving membranes[J]. Chem Select, 2018, 3(29): 8428-8435. |
30 | VASSILIOU A, BIKIARIS D, CHRISSAFIS K, et al. Nanocomposites of isotactic polypropylene with carbon nanoparticles exhibiting enhanced stiffness, thermal stability and gas barrier properties[J]. Compos Sci Technol, 2008, 68(3/4): 933-943. |
31 | ZHANG Q, JIANG M, WANG G, et al. Novel biobased high toughness PBAT/PEF blends: morphology, thermal properties, crystal structures and mechanical properties[J]. New J Chem, 2020, 44(7): 3112-3121. |
32 | CAN U, KAYNAK C. Effects of micro-nano titania contents and maleic anhydride compatibilization on the mechanical performance of polylactide[J]. Polym Compos, 2019, 41(2): 600-613. |
33 | WANG J, LIU X, ZHANG Y, et al. Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: influence of composition on mechanical and barrier properties[J]. Polymer, 2016, 103: 1-8. |
34 | WANG J, LIU X, ZHU J, et al. Copolyesters based on 2,5-furandicarboxylic acid (FDCA): effect of 2,2,4,4-tetramethyl-1,3-cyclobutanediol units on their properties[J]. Polymers, 2017, 9(9): 305. |
35 | HU H, ZHANG R, JIANG Y, et al. Toward biobased, biodegradable, and smart barrier packaging material: modification of poly(neopentyl glycol 2,5-furandicarboxylate) with succinic acid[J]. ACS Sustainable Chem Eng, 2019, 7(4): 4255-4265. |
36 | RUKMANIKRISHNAN B, ISMAIL F R M, MANOHARAN R K, et al. Blends of gellan gum/xanthan gum/zinc oxide based nanocomposites for packaging application: rheological and antimicrobial properties[J]. Int J Biol Macromol, 2020, 148: 1182-1189. |
37 | BAI Y, ZHAO Y, LI Y, et al. UV-shielding alginate films crosslinked with Fe3+ containing EDTA[J]. Carbohydr Polym, 2020, 239: 115480. |
[1] | 周莹, 刘赛男, 蔡砺寒, 张健夫, 逄茂林. 铁掺杂的聚2-硝基-1,4-苯二胺纳米球的制备及在光热/光动力/化学动力学肿瘤治疗中的应用[J]. 应用化学, 2021, 38(2): 0-0. |
[2] | 周莹, 刘赛男, 蔡砺寒, 张健夫, 逄茂林. 铁掺杂的聚2-硝基-1,4-苯二胺纳米球的制备及在光热/光动力/化学动力学肿瘤治疗中的应用[J]. 应用化学, 2021, 38(2): 181-187. |
[3] | 高丽敏, 李璐, 周光远, 王红华, 朱忠丽. 硅土/酚酞聚芳醚砜复合材料的制备及性能[J]. 应用化学, 2020, 37(5): 524-530. |
[4] | 刘丽鑫, 董建红, 张光辉, 朱陆益, 王新强, 许东, CHOW Yuktakb. 静电纺聚偏氟乙烯@硅藻土锂离子电池隔膜的制备及性能[J]. 应用化学, 2020, 37(12): 1441-1446. |
[5] | 安玲玲, 常颖萃, 杜江燕. 三维有序石墨烯掺杂纳米二氧化钛酶生物传感器[J]. 应用化学, 2013, 30(02): 171-177. |
[6] | 饶蔚兰, 潘志权, 向守信. 稀土固体超强酸的制备及其对硬脂肪酸酯化反应的催化[J]. 应用化学, 2011, 28(08): 907-912. |
[7] | 陈双, 陈巧平, 郑曦, 陈晓, 陈震. 三明治式双极膜的制备及其光催化性能[J]. 应用化学, 2010, 27(11): 1301-1305. |
[8] | 张蕾, 张敏, 康平利, 李娜. 纳米TiO2微柱分离富集测定环境样品中的微量碲[J]. 应用化学, 2010, 27(10): 1225-1229. |
[9] | 陈丹云, 邹雪艳, 何建英. SO42-/SnO2-硅藻土型固体酸的制备及其对正丁酸与异戊醇的催化酯化[J]. 应用化学, 2010, 27(07): 797-800. |
[10] | 张蕾,刘娜,康平利,李绮,周新宇. 纳米TiO2微柱分离富集测定环境样品中的微量硒[J]. 应用化学, 2010, 27(03): 323-327. |
[11] | 丁士文, 王利勇, 丁宇, 张美红, 王振兴. 微波加热反应制备纳米TiO2混晶及其光催化性能[J]. 应用化学, 2006, 23(6): 651-654. |
[12] | 李强, 王麟生, 王海霞, 卢荣丽, 刘甜. 纳米氧化镁的制备及其紫外屏蔽性能[J]. 应用化学, 2006, 23(10): 1145-1149. |
[13] | 吴缨, 范崇政, 司靖宇. 纳米TiO2光催化降解聚乙二醇反应[J]. 应用化学, 2005, 22(11): 1253-1257. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||