应用化学 ›› 2023, Vol. 40 ›› Issue (7): 1034-1043.DOI: 10.19894/j.issn.1000-0518.230028
郑建华1(), 管振萍2, 刘国煜1, 曹向禹1, 郑顺姬1, 关美艳1
收稿日期:
2023-02-20
接受日期:
2023-05-23
出版日期:
2023-07-01
发布日期:
2023-07-19
通讯作者:
郑建华
基金资助:
Jian-Hua ZHENG1(), Zhen-Ping GUAN2, Guo-Yu LIU1, Xiang-Yu CAO1, Shun-Ji ZHENG1, Mei-Yan GUAN1
Received:
2023-02-20
Accepted:
2023-05-23
Published:
2023-07-01
Online:
2023-07-19
Contact:
Jian-Hua ZHENG
About author:
jianhua0904@163.comSupported by:
摘要:
为了充分利用光降解技术与过硫酸盐氧化技术耦合的优势,成功制备了具有3D中空结构的花状MnCo2O4催化剂(HF-MnCo2O4)。在可见光照射下,HF-MnCo2O4能够有效地活化过硫酸钾(PS)。将PS引入光催化体系(HF-MnCo2O4/PS/Vis),可以降低光生e-/h+对的复合机率,同时也增加该体系的活性物种数量。以亚甲基蓝(MB)为目标物,考察了HF-MnCo2O4/PS/Vis耦合体系的光催化性能。得益于MnCo2O4独特的分级结构及MnCo2O4和PS之间协同效应,HF-MnCo2O4/PS/Vis耦合体系对MB展现出较好的降解去除能力,可见光照射50 min对MB的去除率达到96.8%。根据自由基捕获实验和能带分析,系统地探讨了HF-MnCo2O4/PS/Vis耦合体系光降解性能增强的机制。
中图分类号:
郑建华, 管振萍, 刘国煜, 曹向禹, 郑顺姬, 关美艳. 过硫酸盐增强花状MnCo2O4可见光降解性能[J]. 应用化学, 2023, 40(7): 1034-1043.
Jian-Hua ZHENG, Zhen-Ping GUAN, Guo-Yu LIU, Xiang-Yu CAO, Shun-Ji ZHENG, Mei-Yan GUAN. Enhanced Photodegradation Performance of Flower-like MnCo2O4 with Persulfate Under Visible Light[J]. Chinese Journal of Applied Chemistry, 2023, 40(7): 1034-1043.
图2 HF-MnCo2O4的XRD (A)、紫外-可见漫反射光谱图(B)、(αhυ)2-hυ曲线(C)、莫特-肖特基曲线(D)和能带结构图(E)
Fig.2 The XRD pattern (A), UV-Vis diffuse reflectance spectra (B), the (αhυ)2-hυ curve (C), the Mott-Schottky plots (D) and the energy-band diagram (E) of HF-MnCo2O4
图5 不同体系下MB去除效果(A)、HF-MnCo2O4/PS/Vis耦合体系对MB降解的吸收光谱图(B)及不同条件下MB降解所对应的一级动力学曲线(C)
Fig.5 MB removal efficiency under different conditions (A), Absorption spectra during the MB degradation over HF-MnCo2O4/PS/Vis (B) and corresponding first-order plots over different conditions (C)
图6 PS的用量(A)及pH值(B)对光降解MB的影响
Fig.6 The effects of dosage of PS (A) and effects of solution pH (B) for photocatalytic degradation MB over the HF-MnCo2O4/PS/Vis
图7 HF-MnCo2O4/PS/Vis耦合体系的循环稳定性(A);光催化降解后SEM图(内插图: TEM图)(B)和XRD图(C);不同捕获剂对HF-MnCo2O4/PS/Vis光催化降解MB的影响(D)
Fig.7 The cycling stability of the HF-MnCo2O4/PS/Vis (A); the SEM image (the inset: TEM image) (B) and the XRD pattern (C) after degradation of MB; the effects of different scavengers on the degradation of MB over HF-MnCo2O4/PS/Vis (D)
1 | HE W, LIU L, MA T, et al. Controllable morphology CoFe2O4/g-C3N4 p-n heterojunction photocatalysts with built-in electric field enhance photocatalytic performance[J]. Appl Catal B: Environ, 2022, 306: 121107. |
2 | LIU J, ZHOU S, GU P, et al. Conjugate polymer-clothed TiO2@V2O5 nanobelts and their enhanced visible light photocatalytic performance in water remediation[J]. J Colloid Interface Sci, 2020, 578: 402-411. |
3 | CHEN M, GUO C, HOU S, et al. A novel Z-scheme AgBr/P-g-C3N4 heterojunction photocatalyst: excellent photocatalytic performance and photocatalytic mechanism for ephedrine degradation[J]. Appl Catal B: Environ, 2020, 266: 118614. |
4 | XIONG Z, WANG Z, MUTHU M, et al. Construction of an in-situ fenton-like system based on a g-C3N4 composite photocatalyst[J]. J Hazard Mater, 2019, 373: 565-571. |
5 | WANG S, HOU Y WANG X. Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light[J]. ACS Appl Mater Interfaces, 2015, 7: 4327-4335. |
6 | ZHENG J, LEI Z. Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability[J]. Appl Catal B: Environ, 2018, 237: 1-8. |
7 | WANG X, JIANG J, MA Y, et al. Tetracycline hydrochloride degradation over manganese cobaltate (MnCo2O4) modified ultrathin graphitic carbon nitride (g-C3N4) nanosheet through the highly efficient activation of peroxymonosulfate under visible light irradiation[J]. J Colloid Interface Sci, 2021, 600: 449-462. |
8 | LIU B, QIAO M, WANG Y, et al. Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible light irradiation[J]. Chemosphere, 2017, 189: 115-122. |
9 | SHI Q, YUE S, LIU Z, et al. Piezo-potential facilitated photocatalytic activation of persulfate over α-Fe2O3 and mechanism insight[J]. Appl Surf Sci, 2021, 541: 148488. |
10 | LI L, YUAN X, ZHOU Z, et al. Research progress of photocatalytic activated persulfate removal of environmental organic pollutants by metal and nonmetal based photocatalysts[J]. J Clean Prod, 2022, 372: 133420. |
11 | CHEN G, YU Y, LIANG L, et al. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: a critical review[J]. J Hazard Mater, 2021, 408: 124461. |
12 | ZHENG J, ZHANG L. One-step in situ formation of 3D hollow sphere-like V2O5 incorporated Ni3V2O8 hybrids with enhanced photocatalytic performance[J]. J Hazard Mater, 2021, 416: 125934. |
13 | LI R, HU H, MA Y, et al. Persulfate enhanced photocatalytic degradation of bisphenol A over wasted batteries-derived ZnFe2O4 under visible light[J]. J Clean Prod, 2020, 276: 124246. |
14 | MA M, YANG Y, CHEN Y, et al. Photocatalytic degradation of MB dye by the magnetically separable 3D flower-like Fe3O4/SiO2/MnO2/BiOBr-Bi photocatalyst[J]. J Alloys Compd, 2021, 861: 158256. |
15 | KRISHNAN A, VISHWANATHAN P V, MOHAN A C, et al. Tuning of photocatalytic performance of CeO2-Fe2O3 composite by Sn-doping for the effective degradation of methlene blue (MB) and methyl orange (MO) dyes[J]. Surf Interfaces, 2021, 22: 100808. |
16 | GHORAI K, PANDA A, BHATTACHARJEE M, et al. Facile synthesis of CuCr2O4/CeO2 nanocomposite: a new fenton like catalyst with domestic LED light assisted improved photocatalytic activity for the degradation of RhB, MB and MO dyes[J]. Appl Surf Sci, 2021, 536: 147604. |
17 | ZHANG D, WANG Q, WANG L, et al. Magnetically separable CdFe2O4/graphene catalyst and its enhanced photocatalytic properties[J]. J Mater Chem A, 2015, 3(7) : 3576-3585. |
18 | ZHANG F, LI X, ZHAO Q, et al. Rational design of ZnFe2O4/In2O3 nanoheterostructures: efficient photocatalyst for gaseous 1,2-dichlorobenzene degradation and mechanistic insight[J]. ACS Sustainable Chem Eng, 2016(4): 4554-4562. |
19 | GUO F, SHI W, WANG H, et al. Facile fabrication of a CoO/g-C3N4 p-n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light[J]. Catal Sci Technol, 2017(7): 3325-3331. |
20 | TAN P, CHEN X, WU L, et al. Hierarchical flower-like SnSe2 supported Ag3PO4 nanoparticles: towards visible light driven photocatalyst with enhanced performance[J]. Appl Catal B: Environ, 2017, 202: 326-334. |
21 | FU G, LIU Z, ZHANG J, et al. Spinel MnCo2O4 nanoparticles cross-linked with two-dimensional porous carbon nanosheets as a high-efficiency oxygen reduction electrocatalyst[J]. Nano Res, 2016, 9(7): 2110-2122. |
22 | KAMRANIFAR M, ALLAHRESANI A, NAGHIZADEH A. Synthesis and characterizations of a novel CoFe2O4@CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin G antibiotic in simulated wastewater[J]. J Hazard Mater, 2019, 366: 545-555. |
23 | ZHENG J, LIU X, ZHANG L. Design of porous double-shell Cu2O@CuCo2O4 Z-scheme hollow microspheres with superior redox property for synergistic photocatalytic degradation of multi-pollutants[J]. Chem Eng J, 2020, 389: 124339. |
24 | ZHENG J, ZHANG L. Designing 3D magnetic peony flower-like cobalt oxides/g-C3N4 dual Z-scheme photocatalyst for remarkably enhanced sunlight driven photocatalytic redox activity[J]. Chem Eng J, 2019, 369: 947-956. |
25 | ZHANG G, CHEN D, LI N, et al. Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity[J]. Appl Catal B: Environ, 2019, 250: 313-324. |
26 | SHAH A K, BHOWMICK S, GOGOI D, et al. Hollow cuboidal MnCo2O4 coupled with nickel phosphate: a promising oxygen evolution reaction electrocatalyst[J]. Chem Commun, 2021, 57(65): 8027-8030. |
27 | ZHAO Y, LIU Y, WANG Y, et al. Correction: rapidly clearable MnCo2O4@PAA as novel nanotheranostic agents for T1/T2 bimodal MRI imaging-guided photothermal therapy[J]. Nanoscale, 2021, 13(48): 20703. |
28 | MURALEE GOPI C V V, RAMESH R, KIM H J. Designing nanosheet manganese cobaltate@manganese cobaltate nanosheet arrays as a battery-type electrode material towards high-performance supercapacitors[J]. J Energy Storage, 2022, 47: 103603. |
29 | 夏强, 廖小刚, 沈海丽, 等. 不同形貌Co3O4的制备及其活化过一硫酸盐降解亚甲基蓝的性能[J]. 无机化学学报, 2022,38(11): 2191-2201. |
XIA Q, LIAO X G, SHEN H L, et al. Co3O4 with different morphologies: synthesis and performances in activating peroxymonosulfate for methylene blue degradation[J]. Chin J Inorg Chem, 2022, 38(11):2191-2201. | |
30 | CHENG J, TU W, ANG E H, et al. Achieving reinforced broad-spectrum and sustained antimicrobial efficacy by nickel-doping AlOOH nanoflower accommodated with uniform silver nanospecies[J]. Colloids Surf A: Physicochem Eng Aspects, 2022(641): 128488. |
31 | ZHANG Z, HUANG L, ZHANG J, et al. In situ constructing interfacial contact MoS2/ZnIn2S4 heterostructure for enhancing solar photocatalytic hydrogen evolution[J]. Appl Catal B: Environ, 2018(233): 112-119. |
32 | ZHOU X, LUO C, LUO M, et al. Understanding the synergetic effect from foreign metals in bimetallic oxides for PMS activation: a common strategy to increase the stoichiometric efficiency of oxidants[J]. Chem Eng J, 2020(381): 122587. |
33 | ZHANG W, FENG S, MA J, et al. Degradation of tetracycline by activating persulfate using biochar-based CuFe2O4 composite[J]. Environ Sci Pollut Res, 2022(29): 67003-67013. |
34 | ZHANG T, LIU Y, RAO Y, et al. Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light[J]. Chem Eng J, 2020, 384: 123350. |
35 | ZHANG H, NENGZI L C, WANG Z, et al. Construction of Bi2O3/CuNiFe LDHs composite and its enhanced photocatalytic degradation of lomefloxacin with persulfate under simulated sunlight[J]. J Hazard Mater, 2020, 383: 121236. |
36 | ZHOU G, SUN H, WANG S, et al. Titanate supported cobalt catalysts for photochemical oxidation of phenol under visible light irradiations[J]. J Clean Prod, 2011, 80(3): 626-634. |
37 | ZHOU P, ZHANG J, LIU J, et al. Degradation of organic contaminants by activated persulfate using zero valent copper in acidic aqueous conditions[J]. RSC Adv, 2016, 6(101): 99532-99539. |
38 | ZHENG J, HU Y, ZHANG L. Design and construction of a bifunctional magnetically recyclable 3D CoMn2O4/CF hybrid as an adsorptive photocatalyst for the effective removal of contaminants[J]. Phys Chem Chem Phys, 2017, 19(36): 25044-25051. |
39 | ZHAO C, WANG J, CHEN X, et al. Bifunctional Bi12O17Cl2/MIL-100(Fe) composites toward photocatalytic Cr(VI) sequestration and activation of persulfate for bisphenol A degradation[J]. Sci Total Environ, 2021, 752: 141901. |
[1] | 郝晨丽, 丁庆伟, 贾世昌, 毛泱博, 王松柏, 马骏. 硫辛酸修饰钛酸纳米管吸附亚甲基蓝的性能[J]. 应用化学, 2023, 40(5): 749-757. |
[2] | 张曦月, 孙红娟, 彭同江, 王娅. 过硫酸钾插层膨胀-氧化法制备高阳离子交换容量氧化石墨及表征[J]. 应用化学, 2021, 38(7): 816-824. |
[3] | 龚文朋, 柯晓芬, 李志鹏, 田超强, 杨水金. 磷钼钨杂多酸修饰金属有机骨架MOF-5复合材料吸附亚甲基蓝[J]. 应用化学, 2016, 33(9): 1047-1055. |
[4] | 石淑云, 任百祥. 新型杂多酸盐光催化降解亚甲基蓝染料废水[J]. 应用化学, 2016, 33(5): 577-582. |
[5] | 靳廷甲, 章祥林, 徐建. 铁酸锰/腐植酸复合材料制备及其对亚甲基蓝吸附性能[J]. 应用化学, 2016, 33(3): 336-342. |
[6] | 邓玲娟, 古元梓, 徐维霞, 马占营. 二氧化钛-石墨烯复合物的制备及其光催化性质[J]. 应用化学, 2012, 29(08): 942-947. |
[7] | 陈影声, 陈震, 卢才英, 郑曦, 陈晓, 陈日耀. 纳米碳纤维固载TiO2[J]. 应用化学, 2010, 27(10): 1188-1191. |
[8] | 艾伦弘, 蒋静, 唐娟. 活性炭/CoFe2O4复合物的制备及其对亚甲基蓝的吸附性能[J]. 应用化学, 2010, 27(06): 710-715. |
[9] | 敏世雄, 王芳, 魏立强, 王永生, 安红钢, 吴冬青. Fe3+掺杂TiO2/凹凸棒复合光催化剂的制备和光催化活性[J]. 应用化学, 2010, 27(06): 700-704. |
[10] | 易菊珍, 张淑静, 张黎明. 腐植酸钠/聚N-异丙基丙烯酰胺/粘土杂化水凝胶的合成及脱色性能[J]. 应用化学, 2009, 26(5): 551-556. |
[11] | 敏世雄, 王芳, 安红钢, 吴冬青, 韩玉琦, 冯雷, 佟永纯. TiO2/共轭高分子纳米复合材料在自然光下的光催化性能[J]. 应用化学, 2009, 26(4): 409-412. |
[12] | 梁英, 刘英. 水热合成掺Fe氧化锌复合材料及其光催化活性[J]. 应用化学, 2009, 26(10): 1247-1249. |
[13] | 王君, 张媛媛, 张蕾, 王晓芳, 徐锐, 郭颖, 张向东. 超声波照射激活亚甲基蓝(MB)声动力损伤牛血清白蛋白(BSA)[J]. 应用化学, 2008, 25(12): 1399-1403. |
[14] | 马淮凌, 曹广秀, 韦秀华. 格列齐特的平行催化氢波及其应用[J]. 应用化学, 2008, 25(1): 90-94. |
[15] | 文晨, 赵莹, 张蕊, 焦俊. La掺杂对活性炭负载TiO2催化剂光催化活性的影响[J]. 应用化学, 2006, 23(7): 734-738. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||