应用化学 ›› 2023, Vol. 40 ›› Issue (6): 845-852.DOI: 10.19894/j.issn.1000-0518.220379

• 研究论文 • 上一篇    下一篇

高精度无损质子交换膜燃料电池膜电极Pt载量与分布测试方法

段骁1,3, 曹锋1,3, 周扬1,3, 张斌2, 董蔚雯2, 魏伶俐2, 李佳1(), 刘建国1()   

  1. 1.华北电力大学能源电力创新研究院,北京 102206
    2.贺利氏贵金属技术(中国)有限公司,南京 211500 )
    3.南京大学现代工程与应用科学学院,南京 210093
  • 收稿日期:2022-11-21 接受日期:2023-03-27 出版日期:2023-06-01 发布日期:2023-06-27
  • 通讯作者: 李佳,刘建国
  • 基金资助:
    国家重点研发计划课题(2019YFB1504503)

High Precision Non-Destructive Test Method of Pt Loading and Distribution in Proton Exchange Membrane Fuel Cell Membrane Electrodes

Xiao DUAN1,3, Feng CAO1,3, Yang ZHOU1,3, Bin ZHANG2, Wei-Wen DONG2, Ling-Li WEI2, Jia LI1(), Jian-Guo LIU1()   

  1. 1.Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China
    2.Heraeus Precious Metal Technology (China) Co. , Ltd. , Nanjing 211500, China )
    3.College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • Received:2022-11-21 Accepted:2023-03-27 Published:2023-06-01 Online:2023-06-27
  • Contact: Jia LI,Jian-Guo LIU
  • About author:jianguoliu@ncepu.edu.cn
    lijia@ncepu.edu.cn
  • Supported by:
    the National Key R&D Program of China(2019YFB1504503)

摘要:

随着质子交换膜燃料电池商业化的推进,为提高膜电极制造的可重现性, 保障膜电极制造工艺的产品控制,需要Pt载量和分布无损高精度在线检测提供技术支撑。根据欧姆定律与焦耳定律,利用质子交换膜燃料电池膜电极在直流激励电压下产生的电流密度和热分布信号可以对膜电极电阻进行分析,通过膜电极Pt载量与其电阻的关系就可以实现膜电极Pt载量和空间分布分析。通过不同直流激励电压下电流测试,证明了膜电极电阻与Pt载量反相关,Pt载量定量表征精度为0.0008~0.0025 mg/cm2; 利用红外热成像法对直流激励电压下膜电极热分布信息的采集成功实现了Pt载量分布的定性分析; 最后,通过直流激励前后膜电极性能的对比证明了该方法对膜电极性能是无损的。高精度无损的直流激励测试方法可以实现膜电极Pt载量的高效在线测试,提高膜电极质量和制造效率,降低膜电极制造成本,对于质子交换膜燃料电池大规模商用具有重要意义。

关键词: 直流激励法, 无损测试, Pt载量, 膜电极, 红外热成像

Abstract:

As the commercialization of proton exchange membrane fuel cells advances, non-destructive high-precision online inspection of Pt loading and distribution is needed in order to improve the reproducibility and product control of membrane electrode assemblies (MEA) fabrication. According to Joule's law and Ohm's law, the MEA resistance can be analyzed by using the heat distribution and current density signals generated under a DC excitation voltage. The inverse correlation between MEA resistance and Pt loading is demonstrated by current testing at different DC excitation voltages, and the accuracy of the non-destructive quantitative characterization of Pt loading is 0.0008~0.0025 mg/cm2. The qualitative analysis of Pt loading distribution is successfully achieved by collecting thermal distribution information of MEA under DC excitation voltage using infrared thermography. Finally, comparison of MEA performance before and after DC excitation demonstrates that the method is non-destructive to membrane electrode performance. This method can improve the quality and manufacturing efficiency of MEA and reduce the cost of MEA manufacturing, which is of great significance to the large-scale commercialization of proton exchange membrane fuel cells.

Key words: DC excitation method, Non-destructive testing, Pt loading, Membrane electrode assemblies, Infrared thermography

中图分类号: