1 |
JING J, LI T, ZHANG X, et al. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism[J]. Appl Energy, 2017, 199: 225-233.
|
2 |
CHENG L, DUAN, L. From waste to high value utilization of spent bleaching clay in synthesizing I high-performance calcium-based sorbent for CO2 capture[J] Appl Energy, 2018, 210: 117-126.
|
3 |
BHATIA K, PERLMUTTER D. Effect of the product layer on the kinetics of the CO2-lime reaction[J]. Aiche J, 2010, 29(1): 79-86.
|
4 |
ALVAREZ D, ABANADES C. Determination of the critical product layer thickness in the reaction of CaO with CO2[J]. Ind Eng Chem Res, 2005, 44(15): 5608-5615.
|
5 |
VALVERDE M, RAGANATI F, QUINTANILLA A, et al. Enhancement of CO2 capture at Ca-looping conditions by high-intensity acoustic fields[J]. Appl Energy, 2016, 111(2): 538-549.
|
6 |
KUCZYNSKI C. Self-diffusion in sintering of metallic particles[J]. Jom, 1949, 1(2): 169-178.
|
7 |
GERMAN M. Surface area reduction kinetics during intermediate stage sintering[J]. J Am Cerm Soc, 2010, 61(5/6): 272-274.
|
8 |
COBLE L. Sintering crystalline solids: I. intermediate and final stage models; II. experimental test of diffusion models in powder compacts[J]. J Phys D Appl Phys, 1961, 32(5): 787-792.
|
9 |
施剑林. 固相烧结—Ⅱ粗化与致密化关系及物质传输途径[J]. 硅酸盐学报, 1997, 25(6): 657-668.
|
|
SHI J L. Solid phase sintering—Ⅱ coarsening and densification relationship and material transport pathway[J]. J Chin Ceram Soc, 1997, 25(6): 657-668.
|
10 |
BLAMEY J, SHI J, ZHONG X, et al. A novel calcium looping absorbent incorporated with polymorphic spacers for hydrogen production and CO2 capture[J]. Energy Environ Sci, 2014, 7(10): 3291-3295.
|
11 |
ABANADES C, ALVAREZ D. Conversion limits in the reaction of CO2 with lime[J]. Energy Fuels, 2003, 17(2): 308-315.
|
12 |
CHEN H, ZHAO Z, HUANG X, et al. Novel optimized process for utilization of CaO-based sorbent for capturing CO2 and SO2 sequentially[J]. Energy Fuels, 2012, 26(9/10): 5596-5603.
|
13 |
GULLRTT K, BRUCE R. Pore distribution changes of calcium-based sorbents reacting with sulfur dioxide[J]. Aiche J, 2010, 33(10):1719-1726.
|
14 |
乔春珍, 王宝利, 肖云汉. 钙基CO2吸收剂循环活性衰减原因初探[J]. 化工学报, 2010, 61(3): 720-724.
|
|
QIAO C Z, WANG B L, XIAO Y H. Preliminary study on the reasons for the decline of circulating activity of calcium based CO2 absorbent[J]. J Chem Eng, 2010, 61(3): 720-724.
|
15 |
IYER V, GUPTA H, SAKADJIAN B, et al. Multicyclic study on the simultaneous carbonation and sulfation of high-reactivity CaO[J]. Ind Eng Chem Res, 2002, 43(14): 3939-3947.
|
16 |
SUN P, GRACE R, LIM C, et al. The effect of CaO sintering on cyclic CO2 capture in energy systems[J]. Aiche J, 2007, 53(9): 2432-2442.
|
17 |
ALVAREZ D, ABANADES C. Determination of the critical product layer thickness in the reaction of CaO with CO2[J]. Ind Eng Chem Res, 2005, 44(15): 5608-5615.
|
18 |
FENNELL S, PACCIANI R, DENNIS S, et al. The effects of repeated cycles of calcination and carbonation on a variety of different limestones, as measured in a hot fuidized bed of sand[J]. Energy Fuels, 2007, 21(4): 2072-2081.
|
19 |
王春波, 周兴, 张斌, 等. 烧结对钙基吸收剂循环煅烧/碳酸化捕集CO2影响[J]. 中国电机工程学报, 2014, 34(35): 8.
|
|
WANG C B, ZHOU X, ZHANG B, et al. Effect of sintering on CO2 capture by calcination/carbonation with calcium absorbent[J]. Pro CSEE, 2014, 34(35): 8.
|
20 |
郑之民, 周兴, 王春波. O2/CO2气氛下钙基脱硫剂孔隙分布模拟[J]. 电力科学与工程, 2013, 29(5): 67-70.
|
|
ZHENG Z M, ZHOU X, WANG C B. Simulation of pore distribution of calcium based desulfurizer in O2/CO2 atmosphere[J]. Electric Power Sci Eng, 2013, 29(5): 67-70.
|
21 |
SILCOX D. Amathematical model for the flash calcinations of dispersed CaCO3 and Ca(OH)2 particles[J]. Ind Eng Chem Res, 1989(28): 155-160.
|
22 |
GHOSH DASTIDAR A, MAHLI S, AGNIHOTRI R, et al. Ultrafast calcination and sintering of Ca(OH)2 powder: experimental and modeling[J]. Chem Int J Eng Sci, 1995, 50(13): 2029-2040.
|
23 |
BHATTACHARYA A, PUROHIT P. Predicting reaction rates for non-catalytic fluid-solid reactions in presence of structural changes in the solid phase[J]. Chem Eng J, 2004, 102(2): 141-149.
|
24 |
MAYA C, JANNA C. Novel model for non-catalytic solid-gas reactions with structural changes by chemical reaction and sintering[J]. Chem Eng Sci, 2016, 142: 258-268.
|
25 |
LI Z, OU J, LUO G, et al. High-efficiency CaO-based sorbent modified by aluminate cement and organic fiber through wet mixing method[J]. Ind Eng Chem Res, 2019, 58(48): 22040-22047.
|
26 |
YOUNG T. Miscellaneous works.vol 1, metal powder industries federation[M]. New Jersey: Princeton, 1980: 58-60.
|
27 |
果世驹. 粉末冶金原理[M]. 北京: 冶金工业出版社, 1997: 272-283.
|
|
GUO S J. Principle of powder metallurgy[M]. Beijing: Metallurgical Industry Press, 1997: 272-283.
|
28 |
WAKAI F, ALDINGER F. Sintering through surface motion by the difference in mean curvature[J]. Acta Mater, 2003, 51(14): 4013-4024.
|
29 |
WAKAI F, ALDINGER F. Sintering forces in equilibrium and non-equilibrium states during sintering of two particles[J]. Sci Technol Adv Mat, 2004, 5(4): 521-525.
|
30 |
PAN J, COCKS C. A numerical technique for the analysis of coupled surface and grain-boundary diffusion[J]. Acta Metall Et Mater, 1995, 43(4): 1395-1406.
|
31 |
KUCHCHERENKO S, PAN J, YEOMANS A. A combined finite element and finite difference scheme for computer simulation of microstructure evolution and its application to pore-boundary separation during sintering[J]. Comput Mater Sci, 2000, 18(1): 76-92.
|
32 |
GOUVEA D, CASTRO R. Sintering: the role of interface energies[J]. Appl Surf Sci, 2003, 217(1/4): 194-201.
|
33 |
SVOBODA J, RIEDEL H. New solutions describing the formation of interparticle necks in solid-state sintering[J]. Acta Metall Et Mater, 1995, 43(1): 1-10.
|
34 |
SRINIVASAN R, TRIVEDI R. Theory of grain boundary grooving under the combined action of the surface and volume diffusion mechanisms[J]. Acta Metall Sin Engl, 1973, 21(5): 611-620.
|
35 |
HORIYA T, ISHIKAWA M, YAMAJI K, et al. Calcium tracer diffusion in (La,Ca)CrO3 by SIMS[J]. Solid State Ionics, 1999,124(3/4): 301-307.
|
36 |
左骁遥, 房晓红, 曾凡桂. 二氧化碳在高岭石孔隙中吸附的分子模拟[J]. 矿产综合利用, 2020, 1(5): 36.
|
|
ZUO X Y, FANG X H, ZENG F G. Molecular simulation of carbon dioxide adsorption in kaolinite pores[J]. Compr Util Min, 2020, 1(5): 36.
|