应用化学 ›› 2022, Vol. 39 ›› Issue (1): 74-85.DOI: 10.19894/j.issn.1000-0518.210460
收稿日期:
2021-09-09
接受日期:
2021-10-13
出版日期:
2022-01-01
发布日期:
2022-01-10
通讯作者:
于严淏
基金资助:
Received:
2021-09-09
Accepted:
2021-10-13
Published:
2022-01-01
Online:
2022-01-10
Contact:
Yan-Hao YU
About author:
yuyh@sustech.edu.cnSupported by:
摘要:
碳酸钙、磷酸钙为代表的生物矿物广泛分布于自然界中,经过不同的矿化过程,在生物体内呈现出多样的结构、形貌和功能,构成生物体多种组织和器官。在人工材料合成领域,仿生矿化通过调控碳酸钙、磷酸钙等矿物的成核与生长,获得具有复杂高级结构和特殊生物功能的无机或无机/有机复合材料。本文重点介绍仿生矿化机理和应用的最近研究进展,包括仿生矿化结晶理论(经典和非经典成核理论)、结晶过程调控方法(无机离子、有机小分子、生物大分子、有机聚合物)以及在生物工程领域的应用(骨组织工程、牙釉质修复、仿生增强材料等),简要展望仿生矿化未来的研究方向,为先进仿生材料的制备与应用提供参考。
中图分类号:
李春, 于严淏. 仿生矿化的机理和应用研究进展[J]. 应用化学, 2022, 39(1): 74-85.
LI Chun, YU Yan-Hao. Research Progress on Mechanism and Application of Biomimetic Mineralization[J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 74-85.
图1 经典成核理论框架内纳米级原子核能量依赖性的示意图[11]
Fig.1 Schematic illustration of the size dependence of the energetics of nanoscopic nuclei within the framework of classical nucleation theory[11]
图2 经典晶体生长模型(灰色线)与非经典晶体生长模型(黑色线) [17]
Fig.2 Classical models of crystal growth (gray curve) and non-classical models of crystal growth (black curve) [17]
图3 钙/镁离子的活性比对碳酸钙形貌的控制[40][图中mol%为物质的量分数(%); Mg/Ca应为n(Mg)/n(Ca)]
Fig.3 Control of the activity ratio of calcium/magnesium ions on the morphology of calcium carbonate[40]
图4 (a)仿生合成珍珠母的宏观/微观形貌;(b)合成珍珠母与天然珍珠母、纯文石等材料的力学性能对比[48]
Fig.4 (a) Macro/micro morphology of biomimetic synthetic nacre; (b) Comparison of mechanical properties of synthetic nacre, natural nacre, pure aragonite and other materials[48]
图5 (a)羟基磷灰石/镁复合骨科植入材料制备示意图;(b)通过氢气析出体积和缓冲溶液pH值评估复合材料的耐腐蚀性[60]
Fig.5 (a) Preparation of hydroxyapatite/magnesium composite orthopedic implant material; (b) Evaluation of corrosion resistance by volume of released H2 and pH of SBF solution[60]
图6 (a) PVA/Alg/HAP仿生纤维的制备过程和网络微观结构示意图;(b)人造纤维与各种蜘蛛丝的拉伸应变曲线对比,蜘蛛种类为:1) Euprosthenops sp (Pisauridae), 2) Cyrtophora citricola (Araneidae), 3) Latrodectus mactans (Theridiidae), 4) A. diadematus (Araneidae), and 5) N. edulis (Tetragnathidae);(c - e) 独立式混合仿生纤维网示意图,此网可以承受2.5 kg的静载荷和500 g的1 m高自由落体的冲击载荷[69]
Fig.6 (a) Schematic illustration of the preparation process and network microstructure of the PVA/Alg/HAP hybrid macrofiber; (b) Typical tensile stress-strain curves of the artificial macrofiber and different SSF obtained from 1) Euprosthenops sp (Pisauridae), 2) Cyrtophora citricola (Araneidae), 3) Latrodectus mactans (Theridiidae), 4) A. diadematus (Araneidae), and 5) N. edulis (Tetragnathidae); (c - e) Photograph of a free-standing hybrid macrofiber net, the as-prepared net can bear a static load of 2.5 kg and an impact load of 500 g free-falling from a height of 1 m[69]
1 | 崔福斋. 生物矿化[M]. 第二版. 北京: 清华大学出版社, 2012: 1-5. |
CUI F Z. Biomineralization [M]. 2nd Ed. Beijing: Tsinghua University Press, 2012: 1-5. | |
2 | YAO S S, BIAO J, LIU Z M, et al. Biomineralization: from material tactics to biological strategy[J]. Adv Mater, 2017, 29(14): 1605903. |
3 | NUDELMAN F, SOMMERDIJK N A J M. Biomineralization as an inspiration for materials chemistry[J]. Angew Chem Int Ed Engl, 2012, 51(27): 6582-6596. |
4 | TIAN E, WATANABE F, MARTIN B, et al. Innate biomineralization[J]. Int J Mol Sci, 2020, 21(14): 4820. |
5 | RAUT H K, SCHWARTZMAN A F, DAS R, et al. Tough and strong: cross-lamella design imparts multifunctionality to biomimetic nacre[J]. ACS Nano, 2020, 14(8): 9771-9779. |
6 | MA Z Q, LI B K, TANG R K. Biomineralization: biomimetic synthesis of materials and biomimetic regulation of organisms[J]. Chinese J Chem, 2021, 39(8): 2071-2082. |
7 | QIN W, WANG C Y, MA Y X, et al. Microbe-mediated extracellular and intracellular mineralization: environmental, industrial, and biotechnological applications[J]. Adv Mater, 2020, 32(22): e1907833. |
8 | ANBU P, KANG C H, SHIN Y J, et al. Formations of calcium carbonate minerals by bacteria and its multiple applications[J]. SpringerPlus, 2016, 5: 250. |
9 | WEINER S, ADDADI L. Crystallization pathways in biomineralization[J]. Annu Rev Mater Sci, 2011, 41(1): 21-40. |
10 | JIN W J, JIANG S Q, PAN H H, et al. Amorphous phase mediated crystallization: fundamentals of biomineralization[J]. Crystals, 2018, 8(1): 48. |
11 | GEBAUER D, KELLERMEIER M, GALE J D, et al. Pre-nucleation clusters as solute precursors in crystallisation[J]. Chem Soc Rev, 2014, 43(7): 2348-2371. |
12 | KARTHIKA S, RADHAKRISHNAN T K, KALAICHELVI P. A review of classical and nonclassical nucleation theories[J]. Cryst Growth Des, 2016, 16(11): 6663-6681. |
13 | LIU R L, HUANG S S, ZHANG X W, et al. Bio-mineralisation, characterization, and stability of calcium carbonate containing organic matter[J]. RSC Adv, 2021, 11(24): 14415-14425. |
14 | RAVENHILL E R, ADOBES-VIDAL M, UNWIN P R. Calcium carbonate crystallisation at charged graphite surfaces[J]. Chem Commun, 2017, 53(93): 12552-12555. |
15 | SONG R Q, COLFEN H. Additive controlled crystallization[J]. Cryst Eng Comm, 2011, 13(5): 1249-1276. |
16 | YANG W C, YIN Q X, CHEN C L. Designing sequence-defined peptoids for biomimetic control over inorganic crystallization[J]. Chem Mater, 2021, 33(9): 3047-3065. |
17 | YOREO J J D, GILBERT P U P A, SOMMERDIJK N A J M, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments[J]. Science, 2015, 349(6247): 6760. |
18 | GEBAUER D, COLFEN H. Prenucleation clusters and non-classical nucleation[J]. Nano Today, 2011, 6(6): 564-584. |
19 | MELDRUM F C, O’SHAUGHNESSY C. Crystallization in confinement[J]. Adv Mater, 2020, 32(21): 2001068. |
20 | WANG X Y, YANG J, ANDREI C M, et al. Biomineralization of calcium phosphate revealed by in situ liquid-phase electron microscopy[J]. Chem Comm, 1(1): 80. |
21 | WEINER S, LEVI-KALISMAN Y, RAZ S, et al. Biologically formed amorphous calcium carbonate[J]. Connect Tissue Res, 2003, 44(1): 214-218. |
22 | MAHAMID J, SHARIR A, ADDADI L, et al. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase[J]. Proc Natl Acad Sci USA, 2008, 105(35): 12748-12753. |
23 | XIAO S H. Ediacaran sponges, animal biomineralization, and skeletal reefs[J]. Proc Natl Acad Sci USA, 2020, 117(35): 20997-20999. |
24 | TANG Q, WAN B, YUAN X L, et al. Spiculogenesis and biomineralization in early sponge animals[J]. Nat Commun, 2019, 10(1): 3348. |
25 | MALIK A, EINBINDER S, MARTINEZ S, et al. Molecular and skeletal fingerprints of scleractinian coral biomineralization: from the sea surface to mesophotic depths[J]. Acta Biomater, 2021, 120: 263-276. |
26 | JIANG S Q, PAN H H, CHEN Y, et al. Amorphous calcium phosphate phasemediated crystal nucleation kinetics and pathway[J]. Faraday Discuss,2015, 179: 451-461. |
27 | GEBAUER D, VOLKEL A, COLFEN H, et al. Stable prenucleation calcium carbonate clusters[J]. Science, 2008, 322(5909): 1819-1822. |
28 | POUGET E M, BOMANS P H H, GOOS J A C M, et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM[J]. Science, 2009, 323(5920): 1455-1458. |
29 | DEY A, BOMANS P H H, MULLER F A, et al. The role of prenucleation clusters in surface-induced calcium phosphate crystallization[J]. Nat Mater, 2010, 9(12): 1010-1014. |
30 | JEE S S, CULVER L, LI Y P, et al. Biomimetic mineralization of collagen via an enzyme-aided PILP process[J]. J Cryst Growth, 2010, 312(8): 1249-1256. |
31 | YU L, WEI M. Biomineralization of collagen-based materials for hard tissue repair[J]. Int J Mol Sci, 2021, 22(2): 944. |
32 | STURM E V, COLFEN H. Mesocrystals: structural and morphogenetic aspects[J]. Chem Soc Rev, 2016, 45(21): 5821-5833. |
33 | RAO A, RONCAL-HERRERO T, SCHMID E, et al. On biomineralization: enzymes switch on mesocrystal assembly[J]. ACS Cent Sci, 2019, 5(2): 357–364. |
34 | CHEN Y Y, FEN Y M, DEVEAUX J G, et al. Biomineralization forming process and bio-inspired nanomaterials for biomedical application: a review[J]. Minerals, 2019, 9(2): 68. |
35 | MA Y F, GAO Y H, FENG Q L, et al. Effects of pH and temperature on CaCO3 crystallization in aqueous solution with water soluble matrix of pearls[J]. J Cryst Growth, 2010, 312(21): 3165-3170. |
36 | BRAHMI C, CHAPRON L, MOULLAC G L, et al. Effects of elevated temperature and pCO2 on the respiration, biomineralization and photophysiology of the giant clam tridacna maxima[J]. Conserv Physiol, 2021, 9(1): coab041. |
37 | ZHANG J L, TANG L, QI H N, et al. Dual function of magnesium in bone biomineralization[J]. Adv Healthc Mater, 2019, 8(21): 1901030. |
38 | MEIER A, KASTNER A, HARRIES D, et al. Calcium carbonates: induced biomineralization with controlled macromorphology[J]. Biogeosciences, 2017, 14(21): 4867-4878. |
39 | HAN Y J, AIZENBERG J. Effect of magnesium ions on oriented growth of calcite on carboxylic acid functionalized self-assembled monolayer[J]. J Am Chem Soc, 2003, 125(14): 4032-4033. |
40 | PURGSTALLER B, KONRAD F, DIETZEL M, et al. Control of Mg2+/Ca2+ activity ratio on the formation of crystalline carbonate minerals via an amorphous precursor[J]. Cryst Growth Des, 2017, 17(3): 1069-1078. |
41 | SUZUKI M. Structural and functional analyses of organic molecules regulating biomineralization[J]. Biosci Biotechnol Biochem, 2020, 84(8): 1529-1540. |
42 | PALAZZO B, WALSH D, IAFISCO M, et al. Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nanocrystals[J]. Acta Biomater, 2008, 5(4): 1241-1252. |
43 | JOSIPOVIC T M, KOVACEVIC M, MATESA S, et al. The influence of dierent classes of amino acids on calcium phosphates seeded growth[J]. Materials, 2020, 13(21): 4798. |
44 | WEI H, SHEN Q, ZHAO Y, et al. On the crystallization of calcium carbonate modulated by anionic surfactants[J]. J Cryst Growth, 2005, 279(3): 439-446. |
45 | ZHANG J L, JI Y T, JIANG S T, et al. Calcium-collagen coupling is vital for biomineralization schedule[J]. Adv Sci, 2021, 8(15): 2100363. |
46 | RUIZ-AGUDO C, LUTZ J, KECKEIS P, et al. Ubiquitin designer proteins as a new additive generation toward controlling crystallization[J]. J Am Chem Soc, 2019, 141(31): 12240-12245. |
47 | LIANG H S, SHENG F, ZHOU B, et al. Phosphoprotein/chitosan electrospun nanofibrous scaffold for biomineralization[J]. Int J Biol Macromol, 2017, 102: 218-222. |
48 | MAO L B, GAO H L, YAO H B, et al. Synthetic nacre by predesigned matrix-directed mineralization[J]. Science, 2016, 354(6308):107-110. |
49 | NGA N K, TAM L T T, HA N T H, et al. Enhanced biomineralization and protein adsorption capacity of 3D chitosan/hydroxyapatite biomimetic scaffolds applied for bone-tissue engineering[J]. RSC Adv, 2020, 10(70): 43045-43057. |
50 | LIU Y X, CHEN Y P, HUANG X C, et al. Biomimetic synthesis of calcium carbonate with different morphologies and polymorphs in the presence of bovine serum albumin and soluble starch[J]. Mater Sci Eng C Mater Biol Appl, 2017, 79: 457-464. |
51 | CAO Y, MEI M L, XU J D, et al. Biomimetic mineralisation of phosphorylated dentine by CPP-ACP[J]. J Dent, 2013, 41(9): 818-825. |
52 | XIAO L F, WU M H, YAN F F, et al. A radial 3D polycaprolactone nanofiber scaffold modified by biomineralization and silk fibroin coating promote bone regeneration in vivo[J]. Int J Biol Macromol, 2021, 72: 19-29. |
53 | IWATSUBO T, KISHI R, YAMAGUCHI T. Calcium carbonate skeletal material is synthesized via phase transition of the calcium carbonate cartilaginous material[J]. ACS Omega, 2019, 4(12): 14820-14830. |
54 | ZHONG L, QU Y, SHI K, et al. Biomineralized polymer matrix composites for bone tissue repair: a review[J]. Sci China Chem, 2018, 61(12): 1553-1567. |
55 | KULAK A N, IDDON P, LI Y T, et al. Continuous structural evolution of calcium carbonate particles: a unifying model of copolymer-mediated crystallization[J]. J Am Chem Soc, 2007, 129(12): 3729-3736. |
56 | DEMINA V A, KRASHENINNIKOVA S V, BUZINA A I, et al. Biodegradable poly(L-lactide)/calcium phosphate composites with improved properties for orthopedics: effect of filler and polymer crystallinity[J]. Mater Sci Eng C, 2020, 112: 110813. |
57 | XU Y F, TIJSSEN K C H, BOMANS P H H, et al. Microscopic structure of the polymer-induced liquid precursor for calcium carbonate[J]. Nat Commun, 2018, 9: 2582. |
58 | FAN T X, CHOW S K, DI Z. Biomorphic mineralization: from biology to materials[J]. Prog Mater Sci, 2009, 54(5): 542-659. |
59 | KOVACS C S, CHAUSSAIN C, OSDOBY P, et al. The role of biomineralization in disorders of skeletal development and tooth formation[J]. Nat Rev Endocrinol, 2021, 17(6): 336-349. |
60 | SU Y C, LI D Y, SU Y C, et al. Improvement of the biodegradation property and biomineralization ability of magnesium-hydroxyapatite composites with dicalcium phosphate dihydrate and hydroxyapatite coatings[J]. ACS Biomater Sci Eng, 2016, 2(5): 818-828. |
61 | THRIVIKRAMAN G, ATHIRASALA A, GORDON R, et al. Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization[J]. Nat Commun, 2019, 10(1): 3520. |
62 | NONOYAMA T, WADA S, KIYAMA R, et al. Double-network hydrogels strongly bondable to bones by spontaneous osteogenesis penetration[J]. Adv Mater, 2016, 28(31): 6740-6745. |
63 | JACKSON R J, PATRICK P S, PAGE K, et al. Chemically treated 3D printed polymer scaffolds for biomineral formation[J], ACS Omega, 2018, 3(4): 4342-4351. |
64 | TAO J H, SHIN Y, JAYASINHA R, et al. The energetic basis for hydroxyapatite mineralization by amelogenin variants provides insights into the origin of amelogenesis imperfecta[J]. Proc Natl Acad Sci USA, 2019, 116(28): 13867-13872. |
65 | FAN Y W, WEN Z T, LIAO S M, et al. Novel amelogenin-releasing hydrogel for remineralization of enamel artificial caries[J]. J Bioact Compat Polym, 2012, 27(6): 585-603. |
66 | LI L, MAO C Y, WANG J M, et al. Bio-inspired enamel repair via glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics[J]. Adv Mater, 2011, 23(40): 4695-4701. |
67 | SHAO C Y, JIN B A, MU Z, et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth[J]. Sci Adv, 2019, 5(8): eaaw9569. |
68 | WHITE K A, CALI V J, OLABISI R M. Micropatterning biomineralization with immobilized mother of pearl proteins[J]. Sci Rep, 2021, 11(1): 2141. |
69 | YU Y D, HE Y, MU Z, et al. Biomimetic mineralized organic-inorganic hybrid macrofiber with spider silk-like supertoughness[J]. Adv Funct Mater, 2020, 30(6):1908556. |
70 | KUO D, NISHIMURA T, KAJIYAMA S, et al. Bioinspired environmentally friendly amorphous CaCO3-based transparent composites comprising cellulose nanofibers[J]. ACS Omega, 2018,3(10):12722-12729. |
71 | YANG K, YANG Q, LI G X, et al. Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites[J]. Mater Lett, 2006, 60(6): 805-809. |
72 | MASTROPIETRO F, GODARD P, BURGHAMMER M, et al. Revealing crystalline domains in a mollusc shell single-crystalline prism[J]. Nat Mater, 2017, 16(9): 946-952. |
73 | LI W L, ZHONG D N, HUA S Y, et al. Biomineralized biohybrid algae for tumor hypoxia modulation and cascade radio-photodynamic therapy[J]. ACS Appl Mater Inter faces, 2020, 12(40): 44541-44553. |
74 | LEE K, WAGERMAIER W, MASIC A, et al. Self-assembly of amorphous calcium carbonate microlens arrays[J]. Nat Commun, 2012, 3: 725. |
75 | SOLLNER C, BURGHAMMER M, BUSCH-NENTWICH E, et al. Control of crystal size and lattice formation by starmaker in otolith biomineralization[J]. Science, 2003, 302(5643): 282-286. |
76 | QING S, LYU C L, ZHU L, et al. Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy[J]. Adv Mater, 2020, 32(47): 2002085. |
77 | XIAO B, ZHOU X X, XU H X, et al. Integration of polymerization and biomineralization as a strategy to facilely synthesize nanotheranostic agents[J]. ACS Nano, 2018, 12(12): 12682-12691. |
78 | WANG P P, XIAO M S, PEI H, et al. Biomineralized DNA nanospheres by metal organic framework for enhanced chemodynamic therapy[J]. Chem Eng J, 2021, 415: 129036. |
79 | WANG J, LIU Z H, REN B Y, et al. Biomimetic mineralisation systems for in situ enamel restoration inspired by amelogenesis[J]. J Mater Sci Mater Med, 2021, 32(9): 115. |
80 | TANIMOTO S, NISHILL I, KANAOKA S. Biomineralization-inspired fabrication of chitosan/calcium carbonates core-shell type composite microparticles as a drug carrier[J]. Int J Biol Macromol, 2019, 129: 659-664. |
81 | SRIVASTAVA P, HIRA S K, SRIVASTAVA D N, et al. ATP-decorated mesoporous silica for biomineralization of calcium carbonate and P2 purinergic receptor-mediated antitumor activity against aggressive lymphoma[J]. ACS Appl Mater Inter faces, 2018, 10(8): 6917-6929. |
[1] | 高艳芳, 王海水. 柠檬酸钠与碳酸钙晶型和形貌的控制[J]. 应用化学, 2015, 32(7): 831-836. |
[2] | 朱德钦, 生瑜, 邹寅将, 方镇, 苏晓芬. 原位固相接枝改性碳酸钙/聚丙烯复合材料的制备[J]. 应用化学, 2013, 30(12): 1411-1416. |
[3] | 生瑜, 朱德钦, 邹寅将, 方镇, 苏晓芬. 不同改性剂对聚丙烯/碳酸钙复合材料性能的影响[J]. 应用化学, 2013, 30(06): 655-660. |
[4] | 李娜, 符嫦娥, 周钰明,陆祎品, 杨维本. 聚醚型无磷共聚物的合成及其阻垢性能[J]. 应用化学, 2013, 30(05): 528-533. |
[5] | 张星, 郑玉婴, 陈德贤. 分散聚合法制备微米级核壳复合粒子[J]. 应用化学, 2012, 29(01): 37-40. |
[6] | 杨小红, 罗重霄, 陈建兵, 刘金库, 章丽佳. 碳酸钙/镍复合导电材料的原位合成及其抗静电性能[J]. 应用化学, 2011, 28(07): 798-803. |
[7] | 董文举, 席君兰, 路雅惠, 李中华, 张培培. 核壳结构聚苯胺-聚电解质-碳酸钙微球复合材料的制备、表征和应用[J]. 应用化学, 2011, 28(01): 22-26. |
[8] | 尹晓爽, 张慧, 杨文忠, 唐永明. 一种假单胞菌诱导CaCO3结晶[J]. 应用化学, 2010, 27(08): 911-915. |
[9] | 陈先勇, 唐琴, 胡卫兵. 均匀大颗粒球形碳酸钙的仿生合成[J]. 应用化学, 2009, 26(5): 562-565. |
[10] | 张普玉, 钟雪丽, 刘洋. PVP-b-PMAA对CaCO3结晶形态的影响[J]. 应用化学, 2008, 25(9): 1052-1056. |
[11] | 戴欣, 尚庆坤, 李诗春, 修艳华, 冯雪娇, 傅高峰, 闫蕊. 纳米-CaCO3/OMMT/HDPE三元复合塑料的制备和性能[J]. 应用化学, 2008, 25(11): 1296-1300. |
[12] | 黄毅萍, 张炎, 陈雷, 陈烨, 陈广美. 成核剂cdbs和纳米碳酸钙对聚丙烯结晶行为和力学性能的影响[J]. 应用化学, 2008, 25(1): 67-72. |
[13] | 叶桂生. 生物高分子模板调控球形碳酸钙的仿生合成[J]. 应用化学, 2006, 23(12): 1413-1415. |
[14] | 吴刚, 陈龙, 谢安建, 沈玉华, 李士阔, 张庆凤. n,o-羧甲基壳聚糖体系中纳米碳酸钙的仿生合成[J]. 应用化学, 2006, 23(10): 1076-1080. |
[15] | 杨洪, 傅山岗. 尿素共沉淀法制备纤维状羟基磷灰石/壳聚糖复合粉料[J]. 应用化学, 2005, 22(1): 87-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||