应用化学 ›› 2020, Vol. 37 ›› Issue (3): 0-0.

• 封面图片 •    下一篇

三醋酸纤维素膜辐射可控接枝甲基丙烯酸缩水甘油酯及其性能

许晨曦,曹明汉,彭静(),李久强,翟茂林()   

  1. 北京大学化学与分子工程学院,高分子化学与物理教育部重点实验室,放射化学与辐射化学重点学科实验室,北京分子科学国家研究中心 北京 100871
  • 收稿日期:2019-10-23 出版日期:2020-03-01 发布日期:2020-07-09
  • 通讯作者: 彭静,翟茂林
  • 基金资助:
    国家自然科学基金委员会-中国工程物理研究院NSAF联合基金重点支持项目资助(No.U1430234)

Modification of Cellulose Triacetate Membranes with Glycidyl Methacrylate via γ-Ray Initiated Controlled Grafting

XU Chenxi,CAO Minghan,PENG Jing(),LI Jiuqiang,ZHAI Maolin()   

  1. Beijing National Laboratory for Molecular Sciences,Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science,Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China
  • Received:2019-10-23 Published:2020-03-01 Online:2020-07-09
  • Contact: PENG Jing,ZHAI Maolin
  • Supported by:
    Supported by the Joint Fund of the National Natural Science Foundation of China and China Academy of Engineering Physics(NSAF)(No.U1430234)

摘要:

三醋酸纤维素(CTA)是一种高强度的天然高分子衍生物,对其进行表面接枝改性将扩展其在物质分离、吸附、检测等领域的广泛应用,但是化学接枝改性CTA比较困难。 本文结合辐射引发接枝和可逆加成-断裂链转移(RAFT)聚合方法,成功地在CTA膜表面可控接枝了聚甲基丙烯酸缩水甘油酯(PGMA)。 研究了吸收剂量、单体GMA质量分数和RAFT试剂含量等因素对接枝率的影响,采用傅里叶变换红外光谱仪(FT-IR)、扫描电子显微镜(SEM)和接触角技术手段对CTA膜接枝前后的结构、形貌和表面性质进行了表征。 实验结果表明,为了得到较高的接枝率,同时又保持较好的形貌,合适的条件为:吸收剂量为10~12 kGy,GMA质量分数为30%,RAFT试剂与GMA的物质的量比为1:400;在不同条件下得到的最高接枝率为41%,接枝聚合物相对分子质量分布最低为1.33。 此外,接枝PGMA后的CTA膜疏水性增加。 该工作提供了可控接枝CTA的简便方法,与传统辐射接枝相比,RAFT辅助辐射接枝反应更加可控,得到的PGMA接枝链更加均匀,有利于根据实际应用来控制接枝率和进行后续的功能修饰。

关键词: 三醋酸纤维素, 辐射接枝, 可逆加成-断裂链转移

Abstract:

Cellulose triacetate (CTA) is a kind of cellulose derivatives with high strength, and the modified CTA can be applied in the separation, adsorption and sensors, however, it is difficult to modify it by chemical initiated grafting. In this article, CTA membranes were successfully modified with poly(glycidyl methacrylate) (PGMA) by the combination of radiation-initiated grafting and the reversible addition-fragmentation chain transfer (RAFT) polymerization method. Effects of absorbed dose, concentration of GMA and amount of RAFT agent on degree of grafting were studied. The structure, morphology and surface property of the CTA membranes before and after grafting were investigated by Flourier transform infrared spectrometer (FT-IR), scanning electronic microscopy (SEM) and contact angle test. The results show that, for a higher degree of grafting and better morphology, the optimal conditions could be found at absorbed dose of 10~12 kGy, with mass fraction 30% of GMA and molar ratio 1/400 of RAFT agent and GMA. The grafted CTA membrane with the highest degree of grafting (41%) and the narrow distribution of relative molecular mass (1.33) can be obtained under suitable conditions. After grafting, the hydrophobicity of CTA membranes increases. The work provides a simple method to prepare grafted CTA with controlled structures. Compared with traditional radiation-initiated grafting, the radiation-initiated RAFT reaction conditions are easier to be controlled in RAFT-mediated grafting process, and the grafted polymer chains are better-distributed, which benefits further functionalization and practical application of modified CTA membranes.

Key words: cellulose triacetate, radiation-induced grafting, reversible addition-fragmentation chain transfer polymerization