应用化学 ›› 2018, Vol. 35 ›› Issue (9): 993-1004.DOI: 10.11944/j.issn.1000-0518.2018.09.180202

• 综合评述 • 上一篇    下一篇

高分子热活化延迟荧光材料研究进展

邵世洋,丁军桥(),王利祥()   

  1. 中国科学院长春应用化学研究所,高分子物理与化学国家重点实验室 长春 130022
  • 收稿日期:2018-06-01 接受日期:2018-06-05 出版日期:2018-09-01 发布日期:2018-08-06
  • 通讯作者: 丁军桥,王利祥
  • 基金资助:
    国家自然科学基金(51573182,51203149,91333205)科技部973计划(2015CB655000)资助课题

Recent Advances on Thermally Activated Delayed Fluorescence Polymers

SHAO Shiyang,DING Junqiao(),WANG Lixiang()   

  1. State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China
  • Received:2018-06-01 Accepted:2018-06-05 Published:2018-09-01 Online:2018-08-06
  • Contact: DING Junqiao,WANG Lixiang
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.51573182, No.51203149, No.91333205), the 973 Project of the Ministry of Science and Technology(No.2015CB655000)

摘要:

高分子热活化延迟荧光材料能够利用热活化的反向系间窜越过程将三线态激子转变为单线态激子而发出荧光,理论上可以实现100%的内量子效率,突破了传统高分子荧光材料内量子效率不超过25%的极限,因而代表了未来低成本高效率高分子发光材料的发展方向。 近年来,高分子热活化延迟荧光材料在分子设计方面取得了重要进展,形成了主链型、侧链型和树枝状高分子热活化延迟荧光材料等材料体系,同时其器件性能得到了大幅提升,部分材料的器件效率达到了高分子磷光材料的水平。 本文从材料和器件两个方面,围绕高分子热活化延迟荧光材料的分子结构、光物理特性和器件性能,总结和评述了国内外研究者在该领域方向的研究进展,并分析了未来发展面临的机遇和挑战。

关键词: 热活化延迟荧光, 有机电致发光, 高分子发光材料, 溶液加工

Abstract:

Thermally activated delayed fluorescence polymers can achieve 100% internal quantum efficiency by utilizing triplet excitons through enhanced reverse intersystem crossing process from the lowest triplet state to singlet state, thereby representing a promising approach toward low-cost and high-effiicnecy light-emitting polymers. Recently, great progress has been made on the material design and device performance of thermally activated delayed fluorescence polymers. This review is aimed to summarize the research progresses on thermally activated delayed fluorescence polymers, with the focus on the molecular design, photophysical characteristic and device performance of mainchain- and sidechain-type thermally activated delayed fluorescence polymers as well as thermally activated delayed fluorescence dendrimers. Finally, the perspectives and the key challenges on developing thermally activated delayed fluorescence polymers are also discussed.

Key words: thermally activated delayed fluorescence, organic light-emitting diodes, light-emitting polymer, solution process