应用化学 ›› 2025, Vol. 42 ›› Issue (6): 838-849.DOI: 10.19894/j.issn.1000-0518.240429

• 研究论文 • 上一篇    下一篇

基于近红外光谱结合机器算法的新陈香榧籽无损鉴别

范郑欣, 昝佳君, 杜园, 孙通()   

  1. 浙江农林大学光机电工程学院,杭州 311300
  • 收稿日期:2024-12-26 接受日期:2025-05-11 出版日期:2025-06-01 发布日期:2025-07-01
  • 通讯作者: 孙通
  • 基金资助:
    浙江省属高校基本科研业务费专项资金(2021TD002);浙江省重点研发计划项目(2020C02019)

Rapid and Non-Destructive Identification of New Torreya grandis Seeds Based on Near-Infrared Spectroscopy and Feature Wavelength Selection Combined with Machine Algorithm for Discrimination

Zheng-Xin FAN, Jia-Jun ZAN, Yuan DU, Tong SUN()   

  1. College of Optomechanical Engineering,Zhejiang A&F University,Hangzhou 311300,China
  • Received:2024-12-26 Accepted:2025-05-11 Published:2025-06-01 Online:2025-07-01
  • Contact: Tong SUN
  • About author:suntong980@163.com
  • Supported by:
    the Special Funds for Basic Scientific Research Business Expenses of Zhejiang Provincial Colleges and Universities(2021TD002);the Key R&D in Zhejiang Province(2020C02019)

摘要:

快速无损鉴别香榧陈籽和新籽,对保护消费者权益十分重要。 采用可见光-近红外光谱仪(光谱仪Ⅰ)、近红外中短波光谱仪(光谱仪Ⅱ)采集带壳香榧样本的光谱,使用9种方法对光谱数据进行预处理,然后利用区间优化选择算法(ICO)、竞争自适应重加权采样(CARS)、连续投影算法(SPA)和变量组合种群分析(VCPA)选择方法筛选显著相关的光谱特征变量,基于优化后的特征变量,分别应用线性判别分析(LDA)、支持向量机(SVM)和反向传播神经网络(BP)方法建立香榧陈籽的判别模型。 结果表明,通过光谱特征优化与模型适配,对于可见-近红外光谱,CARS-SVM模型性能较优,其预测集的敏感性、特异性和准确率均为100%; 对于近红外中短波光谱,标准正态变量变换(SNV)预处理联合VCPA优化特征变量构建的BP模型较优,其预测集敏感性、特异性和准确率分别为98.18%、93.02%和95.04%。 由此可知,近红外光谱结合化学计量学方法能较好地实现香榧陈籽的判别。 旨为香榧陈籽快速无损判别提供一种新的检测方法,有效区分香榧的品质。

关键词: 近红外光谱, 香榧籽, 香榧陈籽, 波长变量选择, 判别模型

Abstract:

Rapid and non-destructive identification of staled and fresh Torreya grandis seeds is crucial for protecting consumers' rights and interests two NIR spectral instruments,visible-near infrared (spectrometer Ⅰ) and short-medium wave NIR (spectrometer Ⅱ), were employed to acquire spectral data from shelled Torreya grandis samples. Nine preprocessing methods were applied to the spectral data, followed by feature variable selection using four algorithms: interval combination optimization (ICO), competitive adaptive reweighted sampling (CARS), successive projections algorithm (SPA), and variable combination population analysis (VCPA). Based on optimized variables, three classification models-linear discriminant analysis (LDA), support vector machine (SVM), and backpropagation neural network (BP) were established. Results demonstrated that spectral feature optimization significantly enhanced model performance. For visible-NIR spectra, the CARS-SVM model achieved optimal classification, with sensitivity, specificity, and accuracy rates of 100% in the prediction set. For short-medium wave NIR spectra, the BP neural network model incorporating standard normal variate (SNV) preprocessing and VCPA-optimized variables exhibited superior performance, attaining sensitivity, specificity, and accuracy rates of 98.18%, 93.02% and 95.04%, respectively. It is aim to provide a detection method for rapid and non-destructive identification of Torreyagrandis stale seeds, effectively distinguishing their quality.

Key words: Near-infrared spectroscopy, Torreya grandis seeds, Torreya grandis stale seeds, Wavelength variable selection, Discrimination model

中图分类号: