应用化学 ›› 2025, Vol. 42 ›› Issue (4): 499-510.DOI: 10.19894/j.issn.1000-0518.240305
杨家添1, 苗雨1, 韦梦婷1, 王宁1, 黎以起1, 陈渊1(
), 覃峰2, 胡华宇3
收稿日期:2024-09-26
接受日期:2025-03-21
出版日期:2025-04-01
发布日期:2025-05-14
通讯作者:
陈渊
作者简介:chenyuan197191@163.com基金资助:
Jia-Tian YANG1, Yu MIAO1, Meng-Ting WEI1, Ning WANG1, Yi-Qi LI1, Yuan CHEN1(
), Feng QIN2, Hua-Yu HU3
Received:2024-09-26
Accepted:2025-03-21
Published:2025-04-01
Online:2025-05-14
Contact:
Yuan CHEN
Supported by:摘要:
为了优化羧甲基β-环糊精(CM-β-CD)制备工艺、利于工业化生产,以β-环糊精(β-CD)和氯乙酸钠(C2H2ClNaO2)为原料,采用机械活化干法制备CM-β-CD。 优化了CM-β-CD的工艺条件、表征了CM-β-CD的结构和测定了CM-β-CD的减水性能。 最佳工艺条件为: n(C2H2ClNaO2)∶n(β-CD)为4∶1、NaOH质量分数20%、球磨温度40 ℃和球磨时间3 h时,此条件下制备得到的CM-β-CD的取代度(DS)为0.72,水泥净浆流动度达到237 mm(添加质量分数0.8%的CM-β-CD)。 与普通干法制备的CM-β-CD相比,机械活化干法制备CM-β-CD的减水性能更优越。 添加CM-β-CD质量分数为0.8%时,水泥砂浆减水率为20.40%,水泥养护时间28 d时的抗压抗折强度达到60.50和7.98 MPa。 CM-β-CD是一种具有应用前景的绿色性能混凝土减水剂。
中图分类号:
杨家添, 苗雨, 韦梦婷, 王宁, 黎以起, 陈渊, 覃峰, 胡华宇. 机械活化干法制备高效减水剂羧甲基-β-环糊精工艺及减水性能[J]. 应用化学, 2025, 42(4): 499-510.
Jia-Tian YANG, Yu MIAO, Meng-Ting WEI, Ning WANG, Yi-Qi LI, Yuan CHEN, Feng QIN, Hua-Yu HU. Preparation Process and Water-Reducing Performance of Carboxymethyl- β -Cyclodextrin by Mechanically Activated Dry Method[J]. Chinese Journal of Applied Chemistry, 2025, 42(4): 499-510.
| No. | n(C2H2ClNaO2)∶n(β-CD) | w(NaOH)/% | Milling temperature/℃ | Milling time/h |
|---|---|---|---|---|
| 1 | 1∶1 | 10 | 20 | 0.5 |
| 2 | 2∶1 | 15 | 30 | 1 |
| 3 | 3∶1 | 20 | 40 | 2 |
| 4 | 4∶1 | 25 | 50 | 3 |
| 5 | 5∶1 | 30 | 60 | 4 |
表1 单因素实验设计
Table 1 Single factor test design
| No. | n(C2H2ClNaO2)∶n(β-CD) | w(NaOH)/% | Milling temperature/℃ | Milling time/h |
|---|---|---|---|---|
| 1 | 1∶1 | 10 | 20 | 0.5 |
| 2 | 2∶1 | 15 | 30 | 1 |
| 3 | 3∶1 | 20 | 40 | 2 |
| 4 | 4∶1 | 25 | 50 | 3 |
| 5 | 5∶1 | 30 | 60 | 4 |
| Level | Factor | |||
|---|---|---|---|---|
| A | B | C | D | |
| n(C2H2ClNaO2)∶n(β-CD) | w(NaOH)/% | Milling temperature/℃ | Milling time/h | |
| 1 | 2∶1 | 15 | 30 | 2 |
| 2 | 3∶1 | 20 | 40 | 3 |
| 3 | 4∶1 | 25 | 50 | 4 |
表2 正交实验因素水平设计
Table 2 Design of factors and level of orthogonal experiment
| Level | Factor | |||
|---|---|---|---|---|
| A | B | C | D | |
| n(C2H2ClNaO2)∶n(β-CD) | w(NaOH)/% | Milling temperature/℃ | Milling time/h | |
| 1 | 2∶1 | 15 | 30 | 2 |
| 2 | 3∶1 | 20 | 40 | 3 |
| 3 | 4∶1 | 25 | 50 | 4 |
图1 n(C2H2ClNaO2)∶n(β-CD)对DS和流动度的影响w(NaOH)=20%,the ball milling temperature is 40 ℃,the ball milling time is 3 h
Fig.1 Effect of n(C2H2ClNaO2)∶n(β-CD) on degree of substitution (DS) and fluidity of cement paste
图4 球磨时间对DS和流动度的影响n(C2H2ClNaO2)∶n(β-CD)=4∶1, w(NaOH)=20%, the ball milling temperature is 40 ℃
Fig.4 Effect of milling time on DS and fluidity of cement paste
| Test number | Factor | DS | Fluidity/mm | |||
|---|---|---|---|---|---|---|
| A | B | C | D | |||
| 1 | 1 | 1 | 1 | 1 | 0.40 | 172 |
| 2 | 1 | 2 | 3 | 2 | 0.61 | 217 |
| 3 | 1 | 3 | 2 | 3 | 0.59 | 208 |
| 4 | 2 | 1 | 3 | 3 | 0.56 | 211 |
| 5 | 2 | 2 | 2 | 1 | 0.78 | 238 |
| 6 | 2 | 3 | 1 | 2 | 0.64 | 222 |
| 7 | 3 | 1 | 2 | 2 | 0.82 | 243 |
| 8 | 3 | 2 | 1 | 1 | 0.65 | 224 |
| 9 | 3 | 3 | 3 | 3 | 0.68 | 221 |
| K1(DS) | 0.53 | 0.59 | 0.56 | 0.61 | ||
| K2(DS) | 0.66 | 0.68 | 0.73 | 0.69 | ||
| K3(DS) | 0.72 | 0.64 | 0.62 | 0.61 | ||
| K1(Fluidity) | 199 | 209 | 206 | 211 | ||
| K2(Fluidity) | 224 | 226 | 230 | 227 | ||
| K3(Fluidity) | 229 | 217 | 216 | 213 | ||
| R(DS) | 0.19 | 0.09 | 0.17 | 0.08 | A3>C2>B2>D2 | |
| R(Fluidity) | 30 | 17 | 24 | 16 | A3>C2>B2>D2 | |
表3 制备CM-β-CD正交实验结果
Table 3 Results of the orthogonal experiment for preparation of CM-β-CD
| Test number | Factor | DS | Fluidity/mm | |||
|---|---|---|---|---|---|---|
| A | B | C | D | |||
| 1 | 1 | 1 | 1 | 1 | 0.40 | 172 |
| 2 | 1 | 2 | 3 | 2 | 0.61 | 217 |
| 3 | 1 | 3 | 2 | 3 | 0.59 | 208 |
| 4 | 2 | 1 | 3 | 3 | 0.56 | 211 |
| 5 | 2 | 2 | 2 | 1 | 0.78 | 238 |
| 6 | 2 | 3 | 1 | 2 | 0.64 | 222 |
| 7 | 3 | 1 | 2 | 2 | 0.82 | 243 |
| 8 | 3 | 2 | 1 | 1 | 0.65 | 224 |
| 9 | 3 | 3 | 3 | 3 | 0.68 | 221 |
| K1(DS) | 0.53 | 0.59 | 0.56 | 0.61 | ||
| K2(DS) | 0.66 | 0.68 | 0.73 | 0.69 | ||
| K3(DS) | 0.72 | 0.64 | 0.62 | 0.61 | ||
| K1(Fluidity) | 199 | 209 | 206 | 211 | ||
| K2(Fluidity) | 224 | 226 | 230 | 227 | ||
| K3(Fluidity) | 229 | 217 | 216 | 213 | ||
| R(DS) | 0.19 | 0.09 | 0.17 | 0.08 | A3>C2>B2>D2 | |
| R(Fluidity) | 30 | 17 | 24 | 16 | A3>C2>B2>D2 | |
| w(CM-β-CD)/% | Cement paste fluidity/mm | Water reduction rate/% | Flexural strength/MPa | Compressive strength/MPa | ||
|---|---|---|---|---|---|---|
| 7 d | 28 d | 7 d | 28 d | |||
| 0 | 0 | 0 | 36.20 | 48.50 | 6.05 | 7.00 |
| 0.2 | 167 | 10.10 | 36.40 | 53.40 | 6.15 | 7.30 |
| 0.4 | 193 | 14.25 | 36.00 | 54.30 | 6.35 | 7.25 |
| 0.6 | 216 | 16.40 | 36.80 | 55.60 | 6.25 | 7.55 |
| 0.8 | 235 | 20.40 | 37.50 | 60.50 | 6.80 | 7.98 |
| 0.8(ordinary dry preparation, CM-β-CD, DS=0.51) | 202 | 14.20 | 35.80 | 52.50 | 6.06 | 7.05 |
表4 CM-β-CD减水剂的水泥性能
Table 4 Cement properties of CM-β-CD water reducer
| w(CM-β-CD)/% | Cement paste fluidity/mm | Water reduction rate/% | Flexural strength/MPa | Compressive strength/MPa | ||
|---|---|---|---|---|---|---|
| 7 d | 28 d | 7 d | 28 d | |||
| 0 | 0 | 0 | 36.20 | 48.50 | 6.05 | 7.00 |
| 0.2 | 167 | 10.10 | 36.40 | 53.40 | 6.15 | 7.30 |
| 0.4 | 193 | 14.25 | 36.00 | 54.30 | 6.35 | 7.25 |
| 0.6 | 216 | 16.40 | 36.80 | 55.60 | 6.25 | 7.55 |
| 0.8 | 235 | 20.40 | 37.50 | 60.50 | 6.80 | 7.98 |
| 0.8(ordinary dry preparation, CM-β-CD, DS=0.51) | 202 | 14.20 | 35.80 | 52.50 | 6.06 | 7.05 |
图9 不同样品水泥净浆XRD图a. Pure cement paste; b. Cement paste prepared with CM-β-CD water-reducing agent by ordinary dry method (DS=0.51); c. Cement paste prepared with CM-β-CD water-reducing agent by mechanical activation-strengthened dry method (DS=0.70)
Fig.9 XRD patterns of cement paste with different samples
图10 不同样品水泥净浆SEM图A. Pure cement paste; B. Cement paste prepared with CM-β-CD water-reducing agent by ordinary dry method (DS=0.51); C. Cement paste prepared with CM-β-CD water-reducing agent by mechanical activation-strengthened dry method (DS=0.70)
Fig.10 SEM microscopy of cement paste with different samples
图11 掺入不同方法制备CM-β-CD的水泥砂浆SEM图A. Pure cement mortar; B. Cement mortar of CM-β-CD prepared by dry method (DS=0.51); C. Cement mortar of mechanical activation-strengthened dry method (DS=0.70)
Fig.11 SEM images of cement mortars of different CM-β-CD prepared by different methods
| 1 | 熊军红, 欧阳东. 黏土矿物对聚羧酸减水剂在净浆、砂浆和混凝土中分散性的影响[J]. 硅酸盐通报, 2023, 42(7): 2344-2353. |
| XIONG J H, OUYANG D. Influences of clay minerals on dispersibility of polycarboxylate superplasticizer in paste, mortar and concrete[J]. Bull Chin Ceram Soc, 2023, 42(7): 2344-2353. | |
| 2 | 郭鹏飞, 余燕华, 黄永毅. 淀粉基聚羧酸减水剂的合成及应用性能研究[J]. 新型建筑材料, 2023, 50(10): 53-56. |
| GUO P F, YU Y H, HUANG Y L. Synthesis and application of a kind of starch based polycarboxylate water reducing agent[J]. New Build Mater, 2023, 50(10): 53-56. | |
| 3 | 刘晓, 赖光洪, 夏春蕾, 等. 混凝土高性能减水剂的绿色与节能制备方法研究进展[J]. 高分子材料科学与工程, 2023, 39(3): 172-180. |
| LIU X, LAI G H, XIA C L, et al. Progress on green and energy- saving preparation methods of concrete high performance water reducer[J]. Polym Mater Sci Eng, 2023, 39(3): 172-180. | |
| 4 | 范士敏, 张磊, 刘江, 等. 含环氧丙烷结构单元的聚羧酸减水剂的合成及性能[J]. 高分子材料科学与工程, 2021, 37(10): 38-44. |
| FAN S M, ZHANG L, LIU J, et al. Synthesis and performance of polycarboxylate superplasticizers containing propylene oxide[J]. Polym Mater Sci Eng, 2021, 37(10): 38-44. | |
| 5 | 苗方利, 姚治会, 张鼎. 淀粉基减水剂对水泥及混凝土性能的影响[J]. 硅酸盐通报, 2021, 40(3): 758-764. |
| MIAO F L, YAO Z H, ZHANG D. Effect of starch-based water reducer on properties of cement and concrete[J]. Bull Chin Ceram Soc, 2021, 40(3): 758-764. | |
| 6 | 何廷树, 杨仁和, 徐一伦, 等. 掺加改性淀粉制备聚羧酸减水剂及其应用[J]. 材料导报, 2018, 32(4): 646-649. |
| HE T S, YANG R H, XU Y L, et al. Synthesis and application of polycarboxylate superplasticizer with modified starch[J]. Mater Rep, 2018, 32(4): 646-649. | |
| 7 | BADRUDDOZA A Z M, HAZEL G S S, HIDAJAT K, et al. Synthesis of carboxymethy-β-cyclodextrin conjugated magneticnano adsorbent for removal of methylene blue[J]. Colloid Surface A, 2010, 367(1/2/3): 85-95. |
| 8 | ZHAO D, ZHAO L, ZHU C S, et al. Synthesis and properties of water insoluble cyclodextrin polymer crosslinked by citric acid with PEG-400 as modifier[J]. Carbohydr Polym, 2009, 78(1): 125-130. |
| 9 | 朱军峰, 张光华, 李楠, 等. 羧甲基-β-环糊精的干法制备[J]. 应用化学, 2008, 25(6): 681-684. |
| ZHU J F, ZHANG G H, LI N, et al. Dry preparation process of carboxym ethylp-cyclodextrin[J]. Chin J Appl Chem, 2008, 25(6): 681-684. | |
| 10 | LI Y W, GUO H L, ZHANG Y F, et al. Synthesis of copolymers with cyclodextrin as pendants and its end group effects as superplastcizer[J]. Carbohydr Polym, 2014, 102: 278-287. |
| 11 | 李霞, 谢龙, 李巧玲. 基于羧甲基-β-环糊精功能材料的研究进展[J]. 高分子通报, 2015(7): 78-85. |
| LI X, XIE L, LI Q L. Progress in carboxymethy-β-cyclodextrin functional materials[J]. Polym Bull, 2015(7): 78-85. | |
| 12 | EVA P, MARTIN G, GRACA S, et al. Cyclodextrins as encapsulation agents for plant bioactive compounds[J]. Carbohydr Polym, 2014, 101: 121-135. |
| 13 | ASTERIA L A, EDUARDO S S, JOSE B M, et al. Cyclodextrin-based polysaccharidic polymers: an approach for the drug delivery[J]. Curr Top Med Chem, 2014, 14(4): 542-551. |
| 14 | 吕生华, 高瑞军, 段建平. 羧甲基-β-环糊精减水剂的制备与性能[J]. 材料导报, 2012, 26(2): 132-135. |
| LU S H, GAO R J, DUAN J P. Preparation and properties of carboxymethy-β-cyclodextrin as a water-reducer[J]. Mater Rep, 2012, 26(2): 132-135. | |
| 15 | 王瑾, 陈均志. 羧甲基-β-环糊精的制备工艺研究[J]. 食品科学, 2009, 30(12): 98-100. |
| WANG J, CHEN J Z. Preparation of carboxymethyl-β-cyclodextrin[J]. Food Sci, 2009, 30(12): 98-100. | |
| 16 | 张艳伟, 蒋登高. 羧甲基-β-环糊精制备工艺改进[J]. 精细石油化工, 2013, 30(6): 55-58. |
| ZHANG Y W, JIANG D G. Improved preparation of carboxymethyl-β-cyclodextrin[J]. Spec Petrochem, 2013, 30(6): 55-58. | |
| 17 | 朱军峰, 张光华, 周晓英, 等. 羧甲基-β-环糊精的制备及其对油酸的包合[J]. 粮油加工, 2008(12): 97-100. |
| ZHU J F, ZHANG G H, ZHOU X Y, et al. Preparation of carboxymethyl-β-cyclodextrin and its inclusion complexation with oleic acid[J]. Cereals Oils Process, 2008(12): 97-100. | |
| 18 | 陈振华, 陈鼎. 机械合金化与固液反应球磨[M]. 北京: 化学工业出版社, 2005. |
| CHEN Z H, CHEN D. Mechanical alloying and solid-liquid reaction ball milling[M]. Beijing: Chemistry Industry Press, 2005. | |
| 19 | 陈渊, 何正绩, 杨家添, 等. 新型丙烯酸接枝淀粉减水剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 92-98. |
| CHEN Y, HE Z J, YANG J T, et al. Preparation and performance research of a novel acrylic acid grafted starch water reducing agent[J]. Mater Rep, 2022, 36(8): 92-98. | |
| 20 | 陈渊, 黎胤宏, 覃峰, 等. 机械活化干法制备新型淀粉基水泥砂浆保水增稠剂[J]. 硅酸盐通报, 2019, 38(4): 1237-1244. |
| CHEN Y, LI Y H, QIN F, et al. Preparation for novel starch-based water-retention and thickening admixture of cement mortar by mechanical activation-strengthened dry method[J]. Bull Chin Ceram Soc, 2019, 38(4): 1237-1244. | |
| 21 | 黄祖强, 胡华宇, 童张法, 等. 玉米淀粉的机械活化效果分析[J]. 化学工程, 2006(10): 51-54. |
| HUANG Z Q, HU H Y, TONG Z F, et al. Analysis of mechanical activation effect of maize starch[J]. Chem Eng, 2006(10): 51-54. | |
| 22 | 杨家添, 唐金铭, 梁恣荣, 等. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
| YANG J T, TANG J M, LIANG Z R, et al. Preparation and application of novel starch-based super absorbent polymer dust suppressant[J]. Chem Ind Eng Prog, 2023, 42(6): 3187-3196. | |
| 23 | GAN T, ZHANG Y J, YANG M N, et al. Synthesis, characterization, and application of a multifunctional cellulose derivative as an environmentally friendly corrosion and scale inhibitor in simulated cooling water systems[J]. I&EC Res, 2018, 57(32): 10786-10797. |
| 24 | 陈晓威, 王坤余. 羧甲基-黄糊精的制备及其在铬复鞣中的应用[J]. 中国皮革, 2010, 39(23): 1-5. |
| CHEN X W, WANG K Y. Preparation of carboxymethyl yellow dextrin and its application in retanning[J]. Chin Leather, 2010, 39(23): 1-5. | |
| 25 | 周叶红, 安文汀, 张国梅, 等. 羧甲基-β-环糊精的制备及分析表征[J]. 山西大学学报(自然科学版), 2005(3): 276-279. |
| ZHOU Y H, AN W D, ZHANG G M, et al. Preparation and characterization of carboxymethyl-β-cyclodextrin[J]. J Shanxi Univ (Nat Sci Ed), 2005(3): 276-279. | |
| 26 | 翟明翚, 刘发强, 苏立强. 羧甲基-β-环糊精的制备及表征[J]. 化工时刊, 2012, 26(2): 18-20, 34. |
| ZHAI M H, LIU F Q, SU L Q. Preparation and characterization of carboxymethyl-β-cyclodextrin[J]. Chem Ind Times, 2012, 26(2): 18-20, 34. | |
| 27 | 黄祖强, 陈渊, 钱维金, 等. 机械活化对玉米淀粉结晶结构与化学反应活性的影响[J]. 化工学报, 2007(5): 1307-1313. |
| HUANG Z Q, CHEN Y, QIAN W J, et al. Mechanical activati on effects on crystal structure and chemical reaction activity of maize starch[J]. CIESC J, 2007(5): 1307-1313. |
| [1] | 李燕, 侯万国. 类水滑石对低取代度阳离子淀粉的吸附行为[J]. 应用化学, 2010, 27(07): 811-816. |
| [2] | 朱军峰, 张光华, 李楠, 高建才. 羧甲基-β-环糊精的干法制备[J]. 应用化学, 2008, 25(6): 681-684. |
| [3] | 朱军峰, 张光华, 李俊国. 高取代度玉米醋酸酯淀粉的制备与表征[J]. 应用化学, 2006, 23(9): 1010-1013. |
| [4] | 宋庆平, 岳文瑾, 丁纯梅. 低碱法制备羧甲基壳聚糖及表征[J]. 应用化学, 2006, 23(8): 913-917. |
| [5] | 姜翠玉, 于维钊, 张春晓. 高取代度阳离子淀粉的合成及其降滤失性能[J]. 应用化学, 2006, 23(4): 424-428. |
| [6] | 戴小敏, 左秀锦, 刘袖洞, 谢威扬, 马小军. 醋酸酯淀粉高取代度的测定[J]. 应用化学, 2003, 20(7): 687-689. |
| [7] | 郝爱友, 张立新, 张海光. 化学滴定法测定羟乙基β-环糊精的平均取代度[J]. 应用化学, 2002, 19(3): 301-303. |
| [8] | 朱颖先, 王月玥, 李瑶君, 陈大俊. 高取代度淀粉醋酸酯的制备[J]. 应用化学, 2001, 18(7): 592-594. |
| [9] | 董炎明, 王勉, 吴玉松. 用FTIR测定邻苯二甲酰化壳聚糖的取代度[J]. 应用化学, 2001, 18(4): 259-263. |
| [10] | 陈凌云, 杜予民, 肖玲, 覃彩芹. 羧甲基壳聚糖的取代度及保湿性[J]. 应用化学, 2001, 18(1): 5-8. |
| [11] | 潘雁, 黄玉惠, 丛广民. 以硝基、氨基修饰改性聚苯醚[J]. 应用化学, 1996, 0(5): 10-13. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||