
应用化学 ›› 2025, Vol. 42 ›› Issue (3): 330-344.DOI: 10.19894/j.issn.1000-0518.240236
刘文佳1,3, 杨梦鑫2,3, 王亚静2,3, 刘艳芳2,3(), 张妙雨2,3, 熊奕衡2
收稿日期:
2024-07-29
接受日期:
2025-02-13
出版日期:
2025-03-01
发布日期:
2025-04-11
通讯作者:
刘艳芳
基金资助:
Wen-Jia LIU1,3, Meng-Xin YANG2,3, Ya-Jing WANG2,3, Yan-Fang LIU2,3(), Miao-Yu ZHANG2,3, Yi-Heng XIONG2
Received:
2024-07-29
Accepted:
2025-02-13
Published:
2025-03-01
Online:
2025-04-11
Contact:
Yan-Fang LIU
About author:
lyftry@126.comSupported by:
摘要:
采用浸渍法分别制备了以硅铝基为载体的铁、铜和钛金属氧化物负载型催化剂,催化臭氧氧化处理焦化废水生化出水(BTCW),考察其对废水中典型有机物(苯酚、喹啉和乙二醇)的降解效果,并分析有机物降解机制。 结果表明,硅铝基负载铁催化剂(Fe@SA)催化性能最佳,对苯酚废水、喹啉废水和乙二醇废水(初始质量浓度均为200 mg/L),Fe@SA催化臭氧氧化体系中化学需氧量(Chemical oxygen demand,COD)的去除率(η)分别为84.56%、39.38%和17.40%,较单独臭氧氧化体系分别提高了5%、6.36%和10.06%; 总有机碳(Total organic carbon,TOC)的η分别为85.38%、15.07%和79.98%,较单独臭氧氧化体系分别提高了40.48%、15.07%和79.98%。 Fe@SA催化臭氧氧化体系对苯酚、喹啉和乙二醇的η分别为99.99%、72.79%和99.79%。 实际BTCW结果表明,Fe@SA催化臭氧氧化体系对COD和TOC的η分别达到48.40%和52.87%。稳定性测试表明,Fe@SA在重复使用5次后仍保持较高的催化活性,COD和TOC的η的下降幅度均不大于2%。 通过表征分析得到Fe@SA催化机理主要依赖于铁离子不同价态的电子转移及其对·OH产生的促进作用。 研究结果为高效催化剂的开发及焦化废水的深度处理提供了理论与技术支持。
中图分类号:
刘文佳, 杨梦鑫, 王亚静, 刘艳芳, 张妙雨, 熊奕衡. 硅铝基负载金属催化臭氧氧化焦化废水有机物效能对比[J]. 应用化学, 2025, 42(3): 330-344.
Wen-Jia LIU, Meng-Xin YANG, Ya-Jing WANG, Yan-Fang LIU, Miao-Yu ZHANG, Yi-Heng XIONG. Comparison of the Efficacy of Silica-Alumina-Based Metal-Loaded Catalytic Ozone Oxidation of Organic Matter in Coking Wastewater[J]. Chinese Journal of Applied Chemistry, 2025, 42(3): 330-344.
Catalysts | Elemental | w(metal)% |
---|---|---|
Fe@SA | Fe | 13 |
Cu@SA | Cu | 10 |
Ti@SA | Ti | 3 |
表1 催化剂中金属负载量
Table 1 Metal loading in catalysts
Catalysts | Elemental | w(metal)% |
---|---|---|
Fe@SA | Fe | 13 |
Cu@SA | Cu | 10 |
Ti@SA | Ti | 3 |
Indexes | COD/(mg·L-1) | TOC/(mg·L-1) | pH |
---|---|---|---|
Numerical value | 475.6 | 130.70 | 7.99 |
表2 BTCW水质特征
Table 2 Characteristics of biochemical effluent of coking wastewater
Indexes | COD/(mg·L-1) | TOC/(mg·L-1) | pH |
---|---|---|---|
Numerical value | 475.6 | 130.70 | 7.99 |
Compound name | Time/min | CAS | w/% | |
---|---|---|---|---|
1 | Toluene | 0.243 | 108-95-2 | 0.07 |
2 | 1,3-Benzenediol, o-(2,6-difluorobenzoyl)-o'-(4-ethylbenzoyl)- | 0.448 | 1000330-83-4 | 0.75 |
3 | Benzo[h]quinoline, 2,4-dimethyl- | 0.924 | 605-67-4 | 2.24 |
4 | 2-p-Nitrophenyl-oxadiazol-1,3,4-one-5 | 1.507 | 1000147-64-6 | 0.08 |
5 | Benz[j]isoquinoline, 3,6,8-trimethyl- | 2.927 | 61171-16-2 | 0.87 |
6 | 2,6-Dimethyl-3,4-bis(trimethylsilyloxymethyl)pyridine | 3.228 | 1000079-52-1 | 0.03 |
7 | Indolizine, 6-ethyl-2-phenyl- | 3.296 | 79373-01-6 | 0.02 |
8 | Benzene, 1,3-dimethyl- | 4.677 | 108-38-3 | 0.02 |
9 | 4-Ethylbenzoic acid, hexyl ester | 5.474 | 1000292-34-4 | 0.03 |
10 | Oxime-, methoxy-phenyl- | 5.532 | 1000222-86-6 | 0.03 |
11 | Benzoic acid, 2-amino-4-methyl- | 5.6 | 2305-36-4 | 0.03 |
12 | Isoquinoline, 3,4-dihydro-6,7-dimethoxy-1-methyl- | 5.688 | 4721-98-6 | 0.14 |
13 | 4-Isopropylphenol, trimethylsilyl ether | 5.785 | 1000373-17-4 | 0.15 |
14 | Benzene, 1,2,4-trimethyl- | 6.115 | 95-63-6 | 0.07 |
15 | Benzene, 1-ethyl-2-methyl- | 6.164 | 611-14-3 | 0.08 |
16 | 1,2-Benzenediol, 3,5-bis(1,1-dimethylethyl)- | 6.261 | 1020-31-1 | 1.34 |
17 | Phenol, 4-[2-(5-nitro-2-benzoxazolyl)ethenyl]- | 6.621 | 319490-19-2 | 36.66 |
18 | Cyclotetrasiloxane, octamethyl- | 7.097 | 556-67-2 | 0.27 |
19 | 6,7-Benzo-phenothiazine-5,5-dioxide | 7.301 | 1225-11-2 | 0.10 |
20 | 4-Ethylbenzoic acid, heptyl ester | 7.476 | 1000292-34-3 | 0.04 |
21 | 4-Ethylbenzoic acid, heptyl ester | 7.593 | 4303-95-1 | 0.04 |
22 | 3-(3-Carboxy-4-hydroxyphenyl)-D-alanine | 7.797 | 1000292-20-2 | 0.06 |
23 | 1,2-Ethanediol | 8.138 | 107-21-1 | 9.55 |
24 | Phenanthro[9,10-d]oxazole, 2-phenyl- | 8.478 | 4410-14-4 | 0.06 |
25 | 4-Ethylbenzoic acid, 2-methylpropyl ester | 8.711 | 1000293-49-4 | 0.04 |
26 | o-Cymene | 8.818 | 527-84-4 | 0.04 |
27 | Benzene, 1-ethyl-2,3-dimethyl- | 8.886 | 933-98-2 | 0.05 |
28 | Benzene, 2-ethyl-1,4-dimethyl- | 8.915 | 1758-88-9 | 0.05 |
29 | Quinazolin-4(3H)-one, 2-(4-nitrophenyl)- | 9.1 | 4765-59-7 | 0.44 |
30 | 1,3-Cyclopentadiene, 1,2,3,4-tetramethyl-5-methylene- | 9.343 | 76089-59-3 | 0.22 |
31 | Benzene, 1,2,4,5-tetramethyl- | 9.421 | 95-93-2 | 0.21 |
32 | Benzene, 4-ethyl-1,2-dimethyl- | 9.606 | 934-80-5 | 0.25 |
33 | Phenol, 2,6-dimethyl-4-nitroso- | 9.732 | 13331-93-6 | 31.29 |
34 | 4-(Benzoylmethyl)-2H-1,4-benzoxazin-3-one | 9.878 | 105492-43-1 | 0.48 |
35 | Phenethylamine, N-methyl-.beta.,3,4-tris(trimethylsiloxy)- | 9.946 | 10538-85-9 | 0.96 |
36 | Cyclopentasiloxane, decamethyl- | 10.15 | 541-02-6 | 0.21 |
37 | Pentasiloxane, dodecamethyl- | 10.247 | 141-63-9 | 0.19 |
38 | 1,2,4-Oxadiazole, 5-(3-nitrophenyl)-3-phenyl- | 10.325 | 28825-11-8 | 0.09 |
39 | Isoquinoline, 6,7-dimethoxy-1-methyl-4-(3,4-dimethylphenyl)- | 10.607 | 102012-79-3 | 0.10 |
40 | Benzene, 2,4-diethyl-1-methyl- | 10.733 | 1758-85-6 | 0.09 |
41 | 4,7-Ethanoindene-5,6-dicarboxylic acid, 1-(2-methoxyethoxy)methoxy-7a-methyl-9-oxo-octahydro- | 10.811 | 98921-89-2 | 0.40 |
42 | Phenol, 4-bromo-2-[(1H-indazol-7-ylamino)methyl]- | 11.171 | 1000350-54-6 | 2.07 |
43 | Silane, ethylmethyl[[5-methyl-2-(1-methylethyl)cyclohexyl]oxy]-2-propenyl-, (1.alpha.,2.beta.,5.alpha.)- | 11.229 | 74841-60-4 | 0.11 |
44 | Fluoren-9-ol, 3,6-dimethoxy-9-(2-phenylethynyl)- | 11.326 | 1000217-31-2 | 0.16 |
45 | Phosphine oxide, bis(pentamethylphenyl)- | 11.521 | 122085-61-4 | 0.17 |
46 | Diacetylmorphine | 11.735 | 561-27-3 | 0.12 |
47 | 7-Methoxy-2,3-diphenyl-4H-chromen-4-one | 11.822 | 18720-69-9 | 0.07 |
48 | Cyclohexasiloxane, dodecamethyl- | 12.017 | 540-97-6 | 0.08 |
49 | Silane, diethyl(trans-4-methylcyclohexyloxy)undecyloxy- | 12.162 | 1000363-56-8 | 0.13 |
50 | Eicosane, 3-methyl- | 12.299 | 6418-46-8 | 0.06 |
51 | Quinoline, 4-methyl- | 12.357 | 491-35-0 | 5.39 |
52 | Isoquinoline, 1-methyl- | 12.444 | 1721-93-3 | 0.19 |
53 | P-Menthane, 3-(2-methylpropen-1-yl)- | 12.833 | 1000159-91-7 | 0.05 |
54 | 7-Quinazolinol | 12.911 | 7556-97-0 | 0.04 |
55 | Dimethylmalonic acid, 4-chlorophenyl octadecyl ester | 13.047 | 1000361-98-6 | 0.04 |
56 | Benzohydrazide, N2-(4-nitrobenzylideno)-4-propoxy- | 13.29 | 332374-41-1 | 0.06 |
57 | 3,7-Bis[(trimethylsilyl)oxy]-9-methoxy-1-methyl(6H)dibenzo[b,d]pyran-6-one | 13.387 | 1000103-29-8 | 0.10 |
58 | 3-(p-Ethoxyphenyl)-5-(O-tolyloxymethyl)-2-oxazolidone | 13.456 | 5256-08-6 | 0.11 |
59 | 4-Quinolinol, 2-phenyl- | 13.543 | 1144-20-3 | 0.24 |
60 | Di-epi-.alpha.-cedrene | 13.737 | 50894-66-1 | 0.04 |
61 | 5.alpha.-Cholestan-2-one, oxime | 13.961 | 14614-13-2 | 0.04 |
62 | 4-Phenyl-3-butyn-2-ol | 14.311 | 1000118-15-0 | 0.03 |
63 | 3',5'-Dimethoxyacetophenone | 14.486 | 39151-19-4 | 0.15 |
64 | 3-Isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris(trimethylsiloxy)tetrasiloxane | 14.632 | 71579-69-6 | 0.57 |
65 | Phenol, 4,6-di(1,1-dimethylethyl)-2-methyl- | 14.972 | 616-55-7 | 0.06 |
66 | Phenol, 2,4-bis(1,1-dimethylethyl)- | 15.108 | 96-76-4 | 0.05 |
67 | Phenol, 3,5-bis(1,1-dimethylethyl)- | 15.215 | 1138-52-9 | 0.04 |
68 | Hexa-t-butylthiatrisiletane | 15.361 | 93194-14-0 | 0.05 |
69 | Estra-1,3,5(10)-trien-17-one, 2-methoxy-3-[(trimethylsilyl)oxy]-, O-methyloxime | 15.487 | 69833-51-8 | 0.03 |
70 | Bis(heptamethylcyclotetrasiloxy)hexamethyltrisiloxane | 15.575 | 71449-67-7 | 0.03 |
71 | Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester | 15.944 | 74381-40-1 | 1.21 |
72 | Epicedrol | 16.207 | 1000156-22-8 | 0.05 |
73 | Silane, [[4-[1,2-bis[(trimethylsilyl)oxy]ethyl]-1,2-phenylene]bis(oxy)]bis[trimethyl- | 16.635 | 56114-62-6 | 0.21 |
74 | 1,1,1,5,7,7,7-Heptamethyl-3,3-bis(trimethylsiloxy)tetrasiloxane | 18.365 | 38147-00-1 | 0.09 |
75 | 3-Trimethylsilyloxystearic acid, trimethylsilyl ester | 20.018 | 1000079-42-6 | 0.03 |
76 | Cyclononasiloxane, octadecamethyl- | 26.065 | 556-71-8 | 0.01 |
77 | Norcodeine di-TMS derivative | 27.475 | 1000137-11-3 | 0.01 |
78 | Propanoic acid, 3-[bis[(trimethylsilyl)oxy]phosphinyl]-, trimethylsilyl ester | 28.69 | 53044-28-3 | 0.01 |
79 | Hexasiloxane, tetradecamethyl- | 29.779 | 107-52-8 | 0.03 |
80 | 3,6-Dioxa-2,4,5,7-tetrasilaoctane, 2,2,4,4,5,5,7,7-octamethyl- | 30.751 | 4342-25-0 | 0.03 |
81 | Heptasiloxane, hexadecamethyl- | 31.149 | 541-01-5 | 0.02 |
82 | Ethyl 4-hydroxybenzo[h]quinoline-3-carboxylate | 31.227 | 339235-30-2 | 0.02 |
83 | Thieno[2,3-b]pyridine-5-carboxylic acid, 2-chloro-7-cyclopropyl-4(7H)-oxo-, methyl ester | 31.276 | 189002-90-2 | 0.02 |
84 | Oxazole, 4,5-diphenyl- | 31.636 | 4675-18-7 | 0.03 |
85 | Benzeneacetic acid, .alpha.,3,4-tris[(trimethylsilyl)oxy]-, trimethylsilyl ester | 31.704 | 37148-65-5 | 0.04 |
86 | N-Acetyl-.alpha.-methyl-4-(4-methoxycarbonyl-1,3-butadienyl)-2-thiazolemethanamine | 32.258 | 1000302-00-4 | 0.02 |
87 | 2-Amino-2-oxo-acetic acid, N-[3,4-dimethylphenyl]-, ethyl ester | 32.792 | 24451-17-0 | 0.03 |
88 | 2-((E)-([3-(2-Dimethylanilino)-1-benzofuran-2-yl]imino)methyl)phenol | 33.415 | 73428-83-8 | 0.02 |
89 | 1H-Indole-2-carboxylic acid, 6-(4-ethoxyphenyl)-3-methyl-4-oxo-4,5,6,7-Tetrahydro-, isopropyl ester | 34.144 | 1000316-17-5 | 0.02 |
表3 BTCW的GC-MS检测有机物种类
Table 3 Organic species detected by GC-MS at BTCW
Compound name | Time/min | CAS | w/% | |
---|---|---|---|---|
1 | Toluene | 0.243 | 108-95-2 | 0.07 |
2 | 1,3-Benzenediol, o-(2,6-difluorobenzoyl)-o'-(4-ethylbenzoyl)- | 0.448 | 1000330-83-4 | 0.75 |
3 | Benzo[h]quinoline, 2,4-dimethyl- | 0.924 | 605-67-4 | 2.24 |
4 | 2-p-Nitrophenyl-oxadiazol-1,3,4-one-5 | 1.507 | 1000147-64-6 | 0.08 |
5 | Benz[j]isoquinoline, 3,6,8-trimethyl- | 2.927 | 61171-16-2 | 0.87 |
6 | 2,6-Dimethyl-3,4-bis(trimethylsilyloxymethyl)pyridine | 3.228 | 1000079-52-1 | 0.03 |
7 | Indolizine, 6-ethyl-2-phenyl- | 3.296 | 79373-01-6 | 0.02 |
8 | Benzene, 1,3-dimethyl- | 4.677 | 108-38-3 | 0.02 |
9 | 4-Ethylbenzoic acid, hexyl ester | 5.474 | 1000292-34-4 | 0.03 |
10 | Oxime-, methoxy-phenyl- | 5.532 | 1000222-86-6 | 0.03 |
11 | Benzoic acid, 2-amino-4-methyl- | 5.6 | 2305-36-4 | 0.03 |
12 | Isoquinoline, 3,4-dihydro-6,7-dimethoxy-1-methyl- | 5.688 | 4721-98-6 | 0.14 |
13 | 4-Isopropylphenol, trimethylsilyl ether | 5.785 | 1000373-17-4 | 0.15 |
14 | Benzene, 1,2,4-trimethyl- | 6.115 | 95-63-6 | 0.07 |
15 | Benzene, 1-ethyl-2-methyl- | 6.164 | 611-14-3 | 0.08 |
16 | 1,2-Benzenediol, 3,5-bis(1,1-dimethylethyl)- | 6.261 | 1020-31-1 | 1.34 |
17 | Phenol, 4-[2-(5-nitro-2-benzoxazolyl)ethenyl]- | 6.621 | 319490-19-2 | 36.66 |
18 | Cyclotetrasiloxane, octamethyl- | 7.097 | 556-67-2 | 0.27 |
19 | 6,7-Benzo-phenothiazine-5,5-dioxide | 7.301 | 1225-11-2 | 0.10 |
20 | 4-Ethylbenzoic acid, heptyl ester | 7.476 | 1000292-34-3 | 0.04 |
21 | 4-Ethylbenzoic acid, heptyl ester | 7.593 | 4303-95-1 | 0.04 |
22 | 3-(3-Carboxy-4-hydroxyphenyl)-D-alanine | 7.797 | 1000292-20-2 | 0.06 |
23 | 1,2-Ethanediol | 8.138 | 107-21-1 | 9.55 |
24 | Phenanthro[9,10-d]oxazole, 2-phenyl- | 8.478 | 4410-14-4 | 0.06 |
25 | 4-Ethylbenzoic acid, 2-methylpropyl ester | 8.711 | 1000293-49-4 | 0.04 |
26 | o-Cymene | 8.818 | 527-84-4 | 0.04 |
27 | Benzene, 1-ethyl-2,3-dimethyl- | 8.886 | 933-98-2 | 0.05 |
28 | Benzene, 2-ethyl-1,4-dimethyl- | 8.915 | 1758-88-9 | 0.05 |
29 | Quinazolin-4(3H)-one, 2-(4-nitrophenyl)- | 9.1 | 4765-59-7 | 0.44 |
30 | 1,3-Cyclopentadiene, 1,2,3,4-tetramethyl-5-methylene- | 9.343 | 76089-59-3 | 0.22 |
31 | Benzene, 1,2,4,5-tetramethyl- | 9.421 | 95-93-2 | 0.21 |
32 | Benzene, 4-ethyl-1,2-dimethyl- | 9.606 | 934-80-5 | 0.25 |
33 | Phenol, 2,6-dimethyl-4-nitroso- | 9.732 | 13331-93-6 | 31.29 |
34 | 4-(Benzoylmethyl)-2H-1,4-benzoxazin-3-one | 9.878 | 105492-43-1 | 0.48 |
35 | Phenethylamine, N-methyl-.beta.,3,4-tris(trimethylsiloxy)- | 9.946 | 10538-85-9 | 0.96 |
36 | Cyclopentasiloxane, decamethyl- | 10.15 | 541-02-6 | 0.21 |
37 | Pentasiloxane, dodecamethyl- | 10.247 | 141-63-9 | 0.19 |
38 | 1,2,4-Oxadiazole, 5-(3-nitrophenyl)-3-phenyl- | 10.325 | 28825-11-8 | 0.09 |
39 | Isoquinoline, 6,7-dimethoxy-1-methyl-4-(3,4-dimethylphenyl)- | 10.607 | 102012-79-3 | 0.10 |
40 | Benzene, 2,4-diethyl-1-methyl- | 10.733 | 1758-85-6 | 0.09 |
41 | 4,7-Ethanoindene-5,6-dicarboxylic acid, 1-(2-methoxyethoxy)methoxy-7a-methyl-9-oxo-octahydro- | 10.811 | 98921-89-2 | 0.40 |
42 | Phenol, 4-bromo-2-[(1H-indazol-7-ylamino)methyl]- | 11.171 | 1000350-54-6 | 2.07 |
43 | Silane, ethylmethyl[[5-methyl-2-(1-methylethyl)cyclohexyl]oxy]-2-propenyl-, (1.alpha.,2.beta.,5.alpha.)- | 11.229 | 74841-60-4 | 0.11 |
44 | Fluoren-9-ol, 3,6-dimethoxy-9-(2-phenylethynyl)- | 11.326 | 1000217-31-2 | 0.16 |
45 | Phosphine oxide, bis(pentamethylphenyl)- | 11.521 | 122085-61-4 | 0.17 |
46 | Diacetylmorphine | 11.735 | 561-27-3 | 0.12 |
47 | 7-Methoxy-2,3-diphenyl-4H-chromen-4-one | 11.822 | 18720-69-9 | 0.07 |
48 | Cyclohexasiloxane, dodecamethyl- | 12.017 | 540-97-6 | 0.08 |
49 | Silane, diethyl(trans-4-methylcyclohexyloxy)undecyloxy- | 12.162 | 1000363-56-8 | 0.13 |
50 | Eicosane, 3-methyl- | 12.299 | 6418-46-8 | 0.06 |
51 | Quinoline, 4-methyl- | 12.357 | 491-35-0 | 5.39 |
52 | Isoquinoline, 1-methyl- | 12.444 | 1721-93-3 | 0.19 |
53 | P-Menthane, 3-(2-methylpropen-1-yl)- | 12.833 | 1000159-91-7 | 0.05 |
54 | 7-Quinazolinol | 12.911 | 7556-97-0 | 0.04 |
55 | Dimethylmalonic acid, 4-chlorophenyl octadecyl ester | 13.047 | 1000361-98-6 | 0.04 |
56 | Benzohydrazide, N2-(4-nitrobenzylideno)-4-propoxy- | 13.29 | 332374-41-1 | 0.06 |
57 | 3,7-Bis[(trimethylsilyl)oxy]-9-methoxy-1-methyl(6H)dibenzo[b,d]pyran-6-one | 13.387 | 1000103-29-8 | 0.10 |
58 | 3-(p-Ethoxyphenyl)-5-(O-tolyloxymethyl)-2-oxazolidone | 13.456 | 5256-08-6 | 0.11 |
59 | 4-Quinolinol, 2-phenyl- | 13.543 | 1144-20-3 | 0.24 |
60 | Di-epi-.alpha.-cedrene | 13.737 | 50894-66-1 | 0.04 |
61 | 5.alpha.-Cholestan-2-one, oxime | 13.961 | 14614-13-2 | 0.04 |
62 | 4-Phenyl-3-butyn-2-ol | 14.311 | 1000118-15-0 | 0.03 |
63 | 3',5'-Dimethoxyacetophenone | 14.486 | 39151-19-4 | 0.15 |
64 | 3-Isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris(trimethylsiloxy)tetrasiloxane | 14.632 | 71579-69-6 | 0.57 |
65 | Phenol, 4,6-di(1,1-dimethylethyl)-2-methyl- | 14.972 | 616-55-7 | 0.06 |
66 | Phenol, 2,4-bis(1,1-dimethylethyl)- | 15.108 | 96-76-4 | 0.05 |
67 | Phenol, 3,5-bis(1,1-dimethylethyl)- | 15.215 | 1138-52-9 | 0.04 |
68 | Hexa-t-butylthiatrisiletane | 15.361 | 93194-14-0 | 0.05 |
69 | Estra-1,3,5(10)-trien-17-one, 2-methoxy-3-[(trimethylsilyl)oxy]-, O-methyloxime | 15.487 | 69833-51-8 | 0.03 |
70 | Bis(heptamethylcyclotetrasiloxy)hexamethyltrisiloxane | 15.575 | 71449-67-7 | 0.03 |
71 | Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester | 15.944 | 74381-40-1 | 1.21 |
72 | Epicedrol | 16.207 | 1000156-22-8 | 0.05 |
73 | Silane, [[4-[1,2-bis[(trimethylsilyl)oxy]ethyl]-1,2-phenylene]bis(oxy)]bis[trimethyl- | 16.635 | 56114-62-6 | 0.21 |
74 | 1,1,1,5,7,7,7-Heptamethyl-3,3-bis(trimethylsiloxy)tetrasiloxane | 18.365 | 38147-00-1 | 0.09 |
75 | 3-Trimethylsilyloxystearic acid, trimethylsilyl ester | 20.018 | 1000079-42-6 | 0.03 |
76 | Cyclononasiloxane, octadecamethyl- | 26.065 | 556-71-8 | 0.01 |
77 | Norcodeine di-TMS derivative | 27.475 | 1000137-11-3 | 0.01 |
78 | Propanoic acid, 3-[bis[(trimethylsilyl)oxy]phosphinyl]-, trimethylsilyl ester | 28.69 | 53044-28-3 | 0.01 |
79 | Hexasiloxane, tetradecamethyl- | 29.779 | 107-52-8 | 0.03 |
80 | 3,6-Dioxa-2,4,5,7-tetrasilaoctane, 2,2,4,4,5,5,7,7-octamethyl- | 30.751 | 4342-25-0 | 0.03 |
81 | Heptasiloxane, hexadecamethyl- | 31.149 | 541-01-5 | 0.02 |
82 | Ethyl 4-hydroxybenzo[h]quinoline-3-carboxylate | 31.227 | 339235-30-2 | 0.02 |
83 | Thieno[2,3-b]pyridine-5-carboxylic acid, 2-chloro-7-cyclopropyl-4(7H)-oxo-, methyl ester | 31.276 | 189002-90-2 | 0.02 |
84 | Oxazole, 4,5-diphenyl- | 31.636 | 4675-18-7 | 0.03 |
85 | Benzeneacetic acid, .alpha.,3,4-tris[(trimethylsilyl)oxy]-, trimethylsilyl ester | 31.704 | 37148-65-5 | 0.04 |
86 | N-Acetyl-.alpha.-methyl-4-(4-methoxycarbonyl-1,3-butadienyl)-2-thiazolemethanamine | 32.258 | 1000302-00-4 | 0.02 |
87 | 2-Amino-2-oxo-acetic acid, N-[3,4-dimethylphenyl]-, ethyl ester | 32.792 | 24451-17-0 | 0.03 |
88 | 2-((E)-([3-(2-Dimethylanilino)-1-benzofuran-2-yl]imino)methyl)phenol | 33.415 | 73428-83-8 | 0.02 |
89 | 1H-Indole-2-carboxylic acid, 6-(4-ethoxyphenyl)-3-methyl-4-oxo-4,5,6,7-Tetrahydro-, isopropyl ester | 34.144 | 1000316-17-5 | 0.02 |
图4 不同催化剂对苯酚废水中COD(A)和TOC(B)去除率、对喹啉废水中COD(C)和TOC(D)去除率以及对乙二醇废水中COD(E)和TOC(F)去除率
Fig.4 The removal rates of COD (A) and TOC (B) in phenol wastewater, COD (C) and TOC (D) in quinoline wastewater and COD (E) and TOC (F) in glycol wastewater were determined by different catalyst
图7 反应前(A)、催化臭氧氧化乙二醇废水后(B)和催化臭氧氧化苯酚废水后(C)Fe@SA的SEM图像
Fig.7 SEM images of Fe@SA before the reaction (A), after catalytic ozonization of ethylene glycol wastewater (B) and after catalytic ozonization of phenol wastewater (C)
图8 反应前(a)、催化臭氧氧化乙二醇废水后(b)和催化臭氧氧化苯酚废水后(c)Fe@SA的XRD谱图
Fig.8 XRD patterns of Fe@SA before reaction (a), after catalytic ozonization of ethylene glycol wastewater (b) and after catalytic ozonization of phenol wastewater (c)
图9 反应前(a)、催化臭氧氧化乙二醇废水后(b)和催化臭氧氧化苯酚废水后(c)Fe@SA的XPS全谱图
Fig.9 Full XPS spectra of Fe@SA before reaction (a), after catalytic ozonization of ethylene glycol wastewater (b) and after catalytic ozonization of phenol wastewater (c)
图10 反应前(A)、催化臭氧氧化乙二醇废水后(B)和催化臭氧氧化苯酚废水后(C)Fe@SA中Fe2p精细谱图
Fig.10 XPS spectra of Fe2p in Fe@SA before reaction (A), after catalytic ozone oxidation of ethylene glycol wastewater (B) and after catalytic ozone oxidation of phenol wastewater (C)
Fe@SA | w(element)/% | Proportions | |||
---|---|---|---|---|---|
Si | Al | Fe | SA/Fe | Si/Al | |
Before reaction | 3.63 | 95.52 | 0.352 | 281.6 | 0.038 |
After catalytic ozonization of ethylene glycol wastewater | 4.17 | 63.93 | 0.30 | 227.6 | 0.065 |
After catalytic ozonization of phenol wastewater | 4.65 | 65.52 | 0.082 | 827.25 | 0.071 |
表4 催化臭氧氧化反应前后Fe@SA中原子相对含量占比
Table 4 Percentage of relative content of atoms in Fe@SA before and after catalytic ozone oxidation reaction
Fe@SA | w(element)/% | Proportions | |||
---|---|---|---|---|---|
Si | Al | Fe | SA/Fe | Si/Al | |
Before reaction | 3.63 | 95.52 | 0.352 | 281.6 | 0.038 |
After catalytic ozonization of ethylene glycol wastewater | 4.17 | 63.93 | 0.30 | 227.6 | 0.065 |
After catalytic ozonization of phenol wastewater | 4.65 | 65.52 | 0.082 | 827.25 | 0.071 |
图11 反应前(a)、催化臭氧氧化乙二醇废水后(b)和催化臭氧氧化苯酚废水后(c)Fe@SA的FT-IR图
Fig.11 FT-IR diagram of Fe@SA before reaction (a), after catalytic ozonation of ethylene glycol wastewater (b) and after catalytic ozonation of phenol wastewater (c)
图13 对苯酚废水(A)、对喹啉废水(B)和对乙二醇废水(C)中Fe@SA重复性能测试曲线
Fig.13 Repetition performance test curve of Fe@SA in phenol wastewater (A), in quinoline wastewater (B) and in ethylene glycol wastewater (C)
1 | 赵洪军, 张倩, 唐一, 等. ZnO-MgO/Al2O3吸附-臭氧催化氧化处理难降解有机废水[J]. 环境化学, 2021, 40(3): 818-827. |
ZHAO H J, ZHANG Q, TANG Y, et al. ZnO-MgO/Al2O3 adsorption-ozone catalytic oxidation treatment of refractory organic wastewater[J]. Environ Chem, 2021, 40(3): 818-827. | |
2 | ZHUANG H, HAN H, JIA S, et al. Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system[J]. Bioresource Technol, 2014, 157: 223-230. |
3 | YANG W, LI X, PAN B, et al. Effective removal of effluent organic matter (EfOM) from bio-treated coking wastewater by a recyclable aminated hyper-cross-linked polymer[J]. Water Res, 2013, 47(13): 4730-4738. |
4 | ZHANG S, ZHENG J, CHEN Z. Combination of ozonation and biological aerated filter (BAF) for bio-treated coking wastewater[J]. Sep Purif Technol, 2014, 132: 610-615. |
5 | ZANG L, WAN Y, ZHANG H, et al. Characterization of non-volatile organic contaminants in coking wastewater using non-target screening: dominance of nitrogen, sulfur, and oxygen-containing compounds in biological effluents[J]. Sci Total Environ, 2022, 837: 155768-15577. |
6 | LI J, WU J, SUN H, et al. Advanced treatment of biologically treated coking wastewater by membrane distillation coupled with pre-coagulation [J]. Desalination, 2016, 380: 43-51. |
7 | TIAN S Q, QI J Y, WANG Y P, et al. Heterogeneous catalytic ozonation of atrazine with Mn-loaded and Fe-loaded biochar[J]. Water Res, 2021, 193(14): 116860. |
8 | CHENG Z, LI J, YANG P, et al. Preparation of MnCo/MCM-41 catalysts with high performance for chlorobenzene combustion[J]. Chin J Catal, 2018, 39(4): 849-856. |
9 | LIU Y, ZHAO J, LI Z, et al. Catalytic ozonation of bisphenol A in aqueous solution using Mn-Ce/HZSM-5 as catalyst[J]. Water Sci Technol, 2015, 725: 696-703. |
10 | 大连市环境监测中心. 水质.挥发酚的测定.4-氨基安替比林分光光度法[Z]. 行业标准-环保. 2009: 13P.; A4. |
Dalian Environmental Monitoring Center. Water quality determination of volatile phenolic compounds 4-AAP spedtrophotometric method[Z]. Industry Standards - Environmental Protection, 2009: 13p.; A4. | |
11 | GEWIRTH A A, VARNELL J A, DIASCRO A M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems[J]. Chem Rev, 2018, 118: 2313-2339. |
12 | PATEL K B, KUMARI P. A review: structure-activity relationship and antibacterial activities of quinoline based hybrids[J]. J Mol Struct, 2022, 1268: 133634-133656. |
13 | ZHU H, HAN Y, MA W, et al. Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW) using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR)[J]. Bioresour Technol, 2017, 245: 786-793. |
14 | 张瑞, 齐仲, 史军军, 等. Au/Cu2O@Au可见光催化还原性能[J]. 石油学报(石油加工), 2023, 39(5): 1092-1103. |
ZHANG R, QI Z, SHI J J, et al. Photocatalytic CO2 reduction of Au/Cu2O@Au photocatalyst under visible-light irradiation[J].Acta Pet Sin (Pet Process Sect),2023, 39(5): 1092-1103. | |
15 | 陈铃, 华洁, 何诗语, 等. Fe0/FeS2活化H2O2快速降解诺氟沙星[J]. 环境工程学报, 2023, 17(9): 2909-2920. |
CHEN L, HUA J, HE S Y, et al. Rapid degradation of norfloxacin by Fe0/FeS2 activated H2O2[J]. Chin J Environ Eng, 2023, 17(9): 2909-2920. | |
16 | 王晴, 康升荣, 吴丽梅, 等. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061. |
WANG Q, KANG S R, WU L M, et al. Structural modeling and molecular dynamics simulation of geopolymers gel[J]. Mater Rep, 2020, 34(4): 4056-4061. | |
17 | 梁川, 李溪, 祝嘉伟, 等. 对CeO2/Cu-Co-O/Al2O3催化剂的表征分析及其催化燃烧甲苯的性能研究[J]. 应用化工, 2021, 50(8): 2071-2075. |
LIANG C, LI X, ZHU J W, et al. Characterization and analysis of CeO2/Cu-Co-O/Al2O3 catalysts and study on catalytic combustion of toluene[J].Appl Chem Ind, 2021, 50(8): 2071-2075. | |
18 | 刘华龙. 基于ZnO模板法制备过渡金属单原子催化剂及其电化学还原CO2研究[D]. 杭州: 浙江大学, 2022. |
LIU H L. The synthesis of transition metal single atom catalyst by ZnO template strategy and its application for electrochemical CO2 reduction[D]. Hangzhou: Zhejiang University, 2022. | |
19 | LANGELL M A. XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature[J]. Appl Surf Sci, 2014, 303: 6-13. |
20 | CAO X F, LIU Q J, YUE T T, et al. Facile preparation of activated carbon supported nano zero-valent iron for Cd(Ⅱ) removal in aqueous environment[J]. J Environ Manage, 2023, 325: 116577 |
21 | YOON K, KWON G, KIM E, et al. Production of Fe-biochar from paper-mill sludge and its application to Se(Ⅵ) and Se(Ⅵ) removal[J]. Chem Eng J, 2024, 484: 149470. |
22 | SUI M, LIU J, SHENG L. Mesoporous material supported manganese oxides (MnOx/MCM-41) catalytic ozonation of nitrobenzene in water[J]. Appl Catal B-Environ Energy, 2011, 106(1/2): 195-203. |
23 | ZHU S M, DONG B Z, YU Y H, et al. Heterogeneous catalysis of ozone using ordered mesoporous Fe3O4 for degradation of atrazine[J]. Chem Eng J, 2017, 328: 527-535. |
24 | 于生慧, 王艳, 张元诏, 等. Ca-Fe基磁性纳米复合材料对水体中磷的结晶回收[J]. 环境工程学报, 2023, 17(9): 2937-2948. |
YU S H, WANG Y, ZHANG Y Z, et al. Crystallization recovery of phosphorus from water by Ca-Fe based magnetic nanocomposites[J]. Chin J Environ Eng, 2023, 17(9): 2937-2948. | |
25 | ZHANG Y, LIANG H, ZHAO C Y, et al. Macroporous alumina monoliths prepared by filling polymer foams with alumina hydrosols. (Reprint)[J]. J Mater Sci, 2009, 443: 391-938. |
26 | 郑骏驰, 吴超, 刘继丹, 等. 接枝修饰SiO2及其在PP中协效阻燃与抗静电作用[J]. 工程塑料应用, 2023, 51(9): 144-151. |
ZHENG J C, WU C, LIU J D, et al. Silica modification by grafting and its application in polypropylene for synergistic flame-retardant and antistatic[J]. Eng Plast Appl, 2023, 51(9):144-151. | |
27 | XU A L, FAN S Y, MENG T, et al. Catalytic ozonation with biogenic Fe-Mn-Co oxides: bosynthesis protocol and catalytic performance[J]. Appl Catal B-Environ Energy, 2022, 318: 121833. |
[1] | 叶冲, 姜敏, 张强, 刘茜, 周光远. 合成聚对苯二甲酸丙二醇酯负载型催化剂钛酸四丁酯/纳米二氧化硅的制备[J]. 应用化学, 2013, 30(01): 32-37. |
[2] | 薛蔓, 张士真, 吴玉峰, 刘剑, 崔元臣. 木质素-四乙烯五胺负载钯配合物的制备及对Suzuki反应的催化性能[J]. 应用化学, 2010, 27(07): 787-791. |
[3] | 刘新明, 崔元臣, 张磊, 赵晓伟. padc-pd催化剂的制备及对heck反应的催化性能[J]. 应用化学, 2006, 23(11): 1286-1290. |
[4] | 张磊, 崔元臣. 淀粉负载钯催化剂的制备及对Heck反应的催化性能[J]. 应用化学, 2005, 22(4): 440-444. |
[5] | 马红超, 付颍寰, 王振旅, 朱万春, 吴通好, 王国甲. V2O5/γ-Al2O3和V2O5/SiO2负载型催化剂对异丁烷的催化脱氢性能[J]. 应用化学, 2004, 21(12): 1221-1224. |
[6] | 胡大为, 秦永宁, 马智, 何菲. 负载型铁系钙钛矿催化剂结构对SO2还原的影响[J]. 应用化学, 2003, 20(5): 452-457. |
[7] | 程庆彦, 钟顺和. 超临界条件下CO2和丙烯直接合成甲基丙烯酸Ni2(OCH3)2/SiO2催化剂[J]. 应用化学, 2003, 20(11): 1039-1043. |
[8] | 金胜明, 阳卫军, 唐谟堂. 丙烯氨氧化Mo-Bi-Fe-P/海泡石负载型催化剂的研究[J]. 应用化学, 2002, 19(2): 168-172. |
[9] | 苏跃华, 姜玄珍. 用负载于中孔分子筛的钯催化剂合成碳酸二乙酯[J]. 应用化学, 2002, 19(10): 994-997. |
[10] | 高健, 钟顺和. 负载型双烷氧基桥联双核铜(Ⅱ)配合物催化剂的合成、表征及催化反应性能[J]. 应用化学, 2000, 17(4): 392-396. |
[11] | 蔡明中, 姚芳, 周军, 胡荣华. 聚γ-(p-二苯膦苯基)丙基硅氧烷钯(Ⅱ)配合物的合成及其催化羰基化性能[J]. 应用化学, 2000, 17(3): 252-255. |
[12] | 蔡明中, 宋才生, 陈江敏. 聚γ-(β-氰乙硫基)丙基硅氧烷铂配合物的合成与催化性能[J]. 应用化学, 1997, 0(4): 37-40. |
[13] | 袁友珠, 陈鸿博, 蔡启瑞. SiO2负载的磺化三苯膦铑配合物催化高碳烯氢甲酰化[J]. 应用化学, 1993, 0(4): 13-17. |
[14] | 陈远荫, 卢雪然, 钟振林. 聚-4,7-二硫杂壬基倍半硅氧烷铂配合物的合成及其对烯烃硅氢加成反应的催化性能[J]. 应用化学, 1992, 0(3): 26-30. |
[15] | 陈远荫, 卢雪然, 王忠雨, 杨业智. 有机硅聚合物负载膦铂、膦铑络合物的合成及催化硅氢化性能[J]. 应用化学, 1989, 0(3): 1-5. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 321
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||