
应用化学 ›› 2025, Vol. 42 ›› Issue (6): 802-810.DOI: 10.19894/j.issn.1000-0518.240235
边美华1,2(), 何雨茵1, 彭家宁1,2, 张兴森1, 覃宋林1
收稿日期:
2024-07-29
接受日期:
2025-05-06
出版日期:
2025-06-01
发布日期:
2025-07-01
通讯作者:
边美华
基金资助:
Mei-Hua BIAN1,2(), Yu-Yin HE1, Jia-Ning PENG1,2, Xing-Sen ZHANG1, Song-Lin QIN1
Received:
2024-07-29
Accepted:
2025-05-06
Published:
2025-06-01
Online:
2025-07-01
Contact:
Mei-Hua BIAN
About author:
27250060@qq.comSupported by:
摘要:
为了应对复杂体系中Fe3+检测,通过5-甲酰水杨酸(FSA)与三羟甲基氨基甲烷(Tris)缩合反应合成了(Z)-5-(((1,3-二羟基-2-(羟甲基)丙-2-基)亚氨基)甲基)-2-羟基苯甲酸(Tris-SA),并成功实现在复杂水体中Fe3+的识别应用。 Tris-SA具有很好的水溶性且在可见光区没有吸收,当加入Fe3+后在可见光区(500 nm)出现新的吸收峰并且溶液颜色由无色变为紫红色,能进行目视观察。 根据500 nm吸收光谱的强度与Fe3+浓度的线性关系,得到其检测限为3.99×10-5 mol/L。 同时,研究了不同pH值及金属离子存在时对Tris-SA识别Fe3+能力的影响,并比较了Tris-SA同商用指示剂水杨酸及磺基水杨酸识别Fe3+的性能优劣。
中图分类号:
边美华, 何雨茵, 彭家宁, 张兴森, 覃宋林. 一种水溶性水杨酸类Fe(Ⅲ)铁指示剂的合成及应用[J]. 应用化学, 2025, 42(6): 802-810.
Mei-Hua BIAN, Yu-Yin HE, Jia-Ning PENG, Xing-Sen ZHANG, Song-Lin QIN. Synthesis and Application of a New Water-Soluble Salicylic Acid Based Sensor for Recognition of Fe(Ⅲ)[J]. Chinese Journal of Applied Chemistry, 2025, 42(6): 802-810.
图3 (A)探针Tris-SA(1×10-4 mol/L)在不同溶剂中的归一化紫外-可见吸收光谱; (B)在不同pH值(3、6.8、12)时Tris-SA(1×10-4 mol/L)的紫外-可见吸收光谱
Fig.3 (A) Normalized UV-Vis spectra of probe Tris-SA (1×10-4 mol/L) in different solvents; (B) UV-Vis spectra of Tris-SA (1×10-4 mol/L) in pH (3, 6.8, 12) values
图4 (A)在含Tris-SA(1×10-4 mol/L)的水溶液中加入5×10-4 mol/L不同金属离子后紫外-可见吸收光谱; (B) Tris-SA(1×10-4 mol/L)中加入5×10-4 mol/L不同金属离子后在500 nm处吸收强度柱状图,插图: 在含Tris-SA (1×10-4 mol/L)的水溶液中加入5×10-4 mol/L Fe3+前后颜色变化图; (C) pH值2~12的条件下,Tris-SA(1×10-4 mol/L)对5×10-4 mol/L Fe3+在500 nm处响应强度图; (D) Tris-SA (1×10-4 mol/L)加入5×10-3 mol/L的不同金属离子再加入5×10-4 mol/L Fe3+前后在500 nm处吸收强度柱状图(蓝色柱状图表示加入5×10-3 mol/L其他金属离子体系吸光度,黄色表示加入5×10-3 mol/L其他金属离子的体系中再加入5×10-4 mol/L Fe3+后的吸光度); (E)在 Tris-SA (1×10-4 mol/L)溶液加入5×10-4 mol/L Fe3+,再加入不同倍化学计量Zn2+紫外-可见吸收光谱; (F)在 Tris-SA (1×10-4 mol/L)溶液加入5×10-4 mol/L Fe3+,再加入含有不同倍化学计量Fe2+的前后的紫外-可见吸收光谱
Fig.4 (A) UV-Vis spectra of Tris-SA (1×10-4 mol/ L) after addition of 5×10-4 mol/L different metal ions in aqueous solution; (B) Absorption histogram at 500 nm of Tris-SA (1×10-4 mol/L) after addition of 5×10-4 mol/L different metal ions, Insert : The color change before and after adding 5×10-4 mol/L Fe3+ in aqueous solution containing Tris-SA (1×10-4 mol/L); (C) UV-Vis spectra of Tris-SA to Fe3+ at 500 nm under different pH 2~12; (D) UV-Vis spectra of Tris-SA (1×10-4 mol/L) at 500 nm first adding 5×10-4 mol/L different metal ions and then 5×10-4 mol/L Fe3+ (the red bar graph indicates the absorbance of the system with the addition of other metal ions, and the green color indicates the absorbance after the addition of other metal ions followed by the addition of 5×10-4 mol/L Fe3+); (E) UV-Vis spectra of Tris-SA/Fe3+ (1×10-4 mol/L/5×10-4 mol/L) with addition different amount of Zn2+; (F) UV-Vis spectra of Tris-SA/Fe3+ (1×10-4 mol/L/5×10-4 mol/L) with addition different amount of Fe2+
图5 (A)加入Fe3+(0~4.5×10-4 mol/L)后Tris-SA(1×10-4 mol/L)的紫外-吸收光谱; (B)在500 nm处Tris-SA的吸光度与Fe3+浓度的关系图; (C)在500 nm处Tris-SA的吸光度与Fe3+的线性曲线 (0~3×10-4 mol/L Fe3+)
Fig.5 (A) UV-Vis spectra Tris-SA (1×10-4 mol/L) after adding different amount of Fe3+ (0~4.5×10-4 mol/L); (B) The relationship between the absorbance of Tris-SA at 500 nm and the concentration of Fe3+; (C) Linear curve of absorbance of Tris-SA at 500 nm (0~3×10-4 mol/L Fe3+)
图6 (A) Tris-SA与Fe3+的Job's曲线; (B)加入Fe3+前后Tris-SA的FT-IR谱图; (C)指示剂Tris-SA与Fe3+的结合示意图
Fig. 6 (A) Job's curve diagram of Tris-SA and Fe3+; (B) FT-IR spectra of Tris-SA before and after adding Fe3+; (C) The proposed binding mechanism between Tris-SA and Fe3+
pH=4 | pH=6.8 | pH=10 | |
---|---|---|---|
ρ(SA)/(g·L-1) | 1.67 | 1.80 | 1.92 |
ρ(SSA)/(g·L-1) | 100.0 | 180 | 270 |
ρ(Tris-SA)/(g·L-1) | 108.92 | 115.7 | 87.4 |
表1 Tris-SA与商用铁指示剂在不同酸碱环境下的饱和溶解度
Table 1 Solubility of Tris-SA and commercial iron indicators in different acid and alkali environments
pH=4 | pH=6.8 | pH=10 | |
---|---|---|---|
ρ(SA)/(g·L-1) | 1.67 | 1.80 | 1.92 |
ρ(SSA)/(g·L-1) | 100.0 | 180 | 270 |
ρ(Tris-SA)/(g·L-1) | 108.92 | 115.7 | 87.4 |
图7 (A)在分别含有SA(1×10-4 mol/L)、SSA(1×10-4 mol/L)和Tris-SA(1×10-4 mol/L)缓冲体系(pH=6.8)加入3×10-4 mol/L前后的Fe3+紫外-可见吸收光谱; (B)指示剂SA(1×10-4 mol/L)、SSA(1×10-4 mol/L)和Tris-SA(1×10-4 mol/L)在500 nm吸收与Fe3+浓度变化的线性关系图
Fig.7 (A) UV-Vis spectra of SA (1×10-4 mol/L), SSA (1×10-4 mol/L), and Tris-SA (1×10-4 mol/L) before and after adding 3 equivalents of Fe3+ in Tris-HCl buffer solution (pH=6.8); (B) Linear relationship diagram between the absorption at 500 nm of SA (1×10-4 mol/L), SSA (1×10-4 mol/L), Tris-SA (1×10-4 mol/L) and the concentration of Fe3+
1 | 陈威, 焦小雨, 赵自强, 等. 热镀锌钢盐雾腐蚀行为及机理研究[J]. 陕西科技大学学报, 2021, 39(4): 130-135. |
CHEN W, JIAO X Y, ZHAO Z Q, et al. Corrosion behaviour and mechanism of salt spray corrosion of hot-dip galvanised steel[J]. J Shanxi Univ Sci, 2021, 39(4): 130-135. | |
2 | 刘栓, 孙虎元, 范汇吉, 等. 镀锌钢腐蚀行为的研究进展[J]. 材料保护, 2012, 45(12): 42-45. |
LIU S, SUN H Y, FAN H J, et al. Advances in corrosion behaviour of galvanised steel[J]. Mater Prot, 2012, 45(12): 42-45. | |
3 | 周蜜, 王建国, 张予, 等. 钢质接地材料电偶加速腐蚀评价方法[J]. 功能材料, 2016, 47(8): 8191-8195. |
ZHOU M, WANG J G, ZHANG Y, et al. Accelerated galvanic corrosion evaluation method of galvanized steel grounding material[J]. J Funct Mater, 2016, 47(8): 8191-8195. | |
4 | WANG W J, PENG J W, LI F M, et al. Phosphorus and chlorine co-doped carbon dots with strong photoluminescence as a fluorescent probe for ferric ions[J]. Microchim Acta, 2018, 186(1): 32-36. |
5 | VERONICA F, SIMONETTA C G, LORENZO S, et al. Assessment of iron absorption in mice by ICP-MS measurements of (57) Fe levels[J]. Europ J Nutr, 2012, 51(7): 783-789. |
6 | WU X Q, XI J L, WEI X H, et al. An ultra-fast UV-electrochemical sensor based on Cu-MOF for highly sensitive and selective detection of ferric ions[J]. The Analyst, 2022, 148(2): 366-373. |
7 | 星成霞, 顾融融, 胡远翔, 等. 石墨炉原子吸收测定高参数机组水汽中的痕量铁[J]. 工业水处理, 2023, 43(12): 162-166. |
XING C X, GU R R, HU Y X, et al. Graphite furnace atomic absorption determination of trace iron in water vapour from high parameter units[J]. Ind Water Treat, 2023, 43(12): 162-166. | |
8 | CHENG F, ZHANG T M, YANG C H, et al. A direct and rapid method for determination of total iron in environmental samples and hydrometallurgy using UV-Vis spectrophotometry[J]. Microchem J, 2022, 179(1): 107478-107479. |
9 | CHEN L, TIAN X, XIA D, et al. Novel colorimetric method for simultaneous detection and identification of multimetal ions in water: sensitivity, selectivity, and recognition mechanism[J]. ACS Omega, 2019, 4(3): 5915-5922. |
10 | PINTO J J, GARCÍA-VARGAS M, MORENO C. Enhanced spectrophotometric methods for trace metal determination in waters: zinc as an example[J]. Anal Methods, 2012, 4(1): 147-152. |
11 | 温景惠, 赵冰, 阚伟, 等. 可区别铁离子荧光探针异构体的合成及其水样分析[J]. 应用化学, 2022, 39(5): 787-796. |
WEN J H, ZHAO B, KAN W, et al. Complex synthesis of fluorescent probe isomers for distinguishable ferric ions and analysis in water[J]. Chin J Appl Chem, 2022, 39(5): 787-796. | |
12 | JADOON S, WASEEM A, YAQOOB M, et al. Flow injection spectrophotometric determination of vitamin E in pharmaceuticals, milk powder and blood serum using potassium ferricyanide-Fe(Ⅲ) detection system[J]. Chin Chem Lett, 2009, 21(6): 712-715. |
13 | 刘天宝, 彭艳芬, 桂美芳. 新型噻唑衍生物的合成及对Fe3+的识别[J]. 化工新型材料, 2018, 46(7): 131-134. |
LIU T B, PENG Y F, GUI M F. Synthesis of novel thiazole derivatives and identification of Fe3+[J]. New Chem Mater, 2018, 46(7): 131-134. | |
14 | ELMALLA S F, ELATTAR R H, KAMAL A H, et al. A highly sensitive switch-on spectrofluorometric method for determination of ascorbic acid using a selective eco-friendly approach[J]. Spectrochim Acta Part A, Mol Biomol Spectrosc, 2021, 270(1): 120802. |
15 | ELANGOVAN N, THOMAS R, SOWRIRAJAN S, et al. Synthesis, spectral and quantum mechanical studies and molecular docking studies of Schiff base (E)2-hydroxy-5-(((4-(N-pyrimidin-2-yl) sulfamoyl) phenyl) imino) methyl benzoic acid from 5-formyl salicylic acid and sulfadiazine[J]. J Indian Chem Soc, 2021, 98(10): 164-166. |
16 | CHEN F, ZHANG W, LIU Z, et al. Enhancement of intramolecular charge transfer strength in diphenylamine substituted symmetric 1,3,4-oxadiazole derivatives[J]. RSC Adv, 2018, 9(1): 1-10. |
17 | RODRIGUEZ C, WILLIA M, NORIA R, et al. Ultrafast fluorescence study of the effect of carboxylic and carboxylate substituents on the excited state properties of anthracene[J]. J Lumin, 2014, 145: 697-707. |
18 | CHENG G J S, LIU Y P, XIONG Z, et al. A novel AIE-based imidazolium for carbonate ion detection[J]. Dyes Pigm, 2024, 224: 112018. |
19 | 庞煜霞, 邱学青, 杨东杰, 等. 木质素磺酸钙的络合性能研究[J]. 林产化学与工业, 2004, 24(4): 5. |
PANG Y X, QIU X Q, YANG D J, et al. Studies on the complexation properties of calcium lignosulfonate[J]. Chem Ind Forest Prod, 2004, 24(4): 5. | |
20 | 赵乐, 李叶静, 房宏伟. 基于两种不同分光光度法测定石灰石中三氧化二铁含量的比较[J]. 广东化工, 2020, 47(5): 183-184, 191. |
ZHAO L, LI Y J, FANG H W. Comparison of detecting for Fe2O3 in limestone based on two different spectrophotometry[J]. Guangdong Chem Ind, 2020, 47(5): 183-184, 191. | |
21 | MAURER L A, PEARCE O M, MAHARAJ F D R, et al. Open for bismuth: main group metal-to-ligand charge transfer[J]. Inorg Chem, 2021, 60(14): 10137-10146. |
22 | KUMAR P, KUMAR V, GUPTA R. Selective fluorescent turn-off sensing of Pd 2+ ion: applications as paper strips, polystyrene films, and in cell imaging[J]. RSC Adv, 2018, 12(7): 113-116. |
23 | DIMITRIJEVIC J, ARSENIJEVIC N A, MILOVANOVIC Z M, et al. Synthesis, characterization and cytotoxic activity of binuclear copper(Ⅱ)-complexes with some S-isoalkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(Ⅱ)-complex with S-isopropyl derivative of thiosalicylic acid[J]. J Inorg Biochem, 2020, 208(8): 1236-1238. |
[1] | 侯淑华, 李仕琦, 汤立军. 新型水溶性罗丹明类荧光探针的合成及其对游离3价金属离子的识别[J]. 应用化学, 2022, 39(02): 241-246. |
[2] | 曾波,杨雁冰,梁玲,袁荃. 膀胱癌液体活检的研究进展[J]. 应用化学, 2019, 36(4): 367-378. |
[3] | 林声声, 何清运, 周嘉敏, 招铭朋, 冯宗财, 余彪, 宋秀美. 基于偶氮苯酚类的比色传感器识别阴离子[J]. 应用化学, 2019, 36(12): 1447-1455. |
[4] | 武鑫, 马骏, 南明, 双少敏, 董川. 荧光素衍生物水杨醛荧光素腙的合成及对铜(Ⅱ)离子的检测[J]. 应用化学, 2016, 33(3): 357-363. |
[5] | 闫月荣, 高成庄, 张艳青, 褚文娅, 李双双, 赵伟, 周群, 李晓伟. 钴岛膜上对巯基苯甲酸的表面增强红外吸收光谱[J]. 应用化学, 2015, 32(2): 221-224. |
[6] | 康鹏, 郑宗明, 覃吴, 杨勇平, 董长青. 磷酸丙酮法木质纤维素预处理中木质素的分离与表征[J]. 应用化学, 2014, 31(05): 570-576. |
[7] | 熊小琴, 翟秋阁, 薛灵芬, 郑斐, 谢旭. 苯乙烯嘧啶化合物的合成及其作为pH探针的光谱特点[J]. 应用化学, 2012, 29(11): 1262-1265. |
[8] | 龚双梅, 李晓波, 张荣荣, 赵良容, 杨昌英. Ce(VI)与6种天然黄酮化合物的氧化还原体系及其应用[J]. 应用化学, 2011, 28(11): 1286-1291. |
[9] | 肖开提·阿布力孜, 阿布力孜·伊米提, 彭秧, 王吉德, 司马义·努尔拉. 交联聚丙烯腈螯合树脂对Pb(Ⅱ)的吸附及其在痕量分析中的应用[J]. 应用化学, 2011, 28(09): 1082-1086. |
[10] | 乐敏, 李原芳. 藏红T与六偏磷酸钠的相互作用及在食品分析中的应用[J]. 应用化学, 2011, 28(09): 1087-1092. |
[11] | 张强华, 石莹莹, 熊清平, 钟秦. 分子印迹壳聚糖/凹土分离富集-火焰原子吸收光谱测定痕量铅[J]. 应用化学, 2011, 28(09): 1073-1081. |
[12] | 卢菊生, 徐佳佳, 田久英, 沈, 莉, 侯彬彬, 吴体薇. 微乳相萃取分离富集-原子吸收光谱法分析铬形态[J]. 应用化学, 2010, 27(10): 1230-1234. |
[13] | 郭兴家, 郭闯, 姜玉春, 佟健, 康平利, 安如彬, 韩晓伟. 光谱法研究氨基己酸与牛血清白蛋白的相互作用[J]. 应用化学, 2010, 27(10): 1192-1198. |
[14] | 冒爱荣. 间接原子吸收光谱法测定西沙必利片的含量[J]. 应用化学, 2009, 26(2): 246-248. |
[15] | 邱东方, 程延祥,王利祥. 齐聚苯胺修饰的三联吡啶铁配合物的合成及其光谱和电化学性质[J]. 应用化学, 2009, 26(12): 1377-1385. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 116
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||