1 |
AGHAYAN M, MAHMOUDI A, SAZEGAR M R, et al. Tailoring cysteine detection in colorimetric techniques using Co/Fe-functionalized mesoporous silica nanoparticles[J]. J Mater Chem B, 2021, 9(17): 3716-3726.
|
2 |
HE J H, WU X, LONG Z, et al. Fast and sensitive fluorescent and visual sensing of cysteine using Hg-metalated PCN-222[J]. Microchem J, 2019, 145: 68-73.
|
3 |
TAJIK S, DOURANDISH Z, JAHANI P M, et al. Recent developments in voltammetric and amperometric sensors for cysteine detection[J]. RSC Adv, 2021, 11(10): 5411-5425.
|
4 |
张召娟, 侯学振, 张凌素. 半胱氨酸分析检测方法的研究进展[J]. 广东化工, 2022, 49(16): 185-187.
|
|
ZHANG Z J, HOU X Z, ZHANG L S. Research progress of cysteine detection technology[J]. Guangdong Chem Ind, 2022, 49(16): 185-187.
|
5 |
钱蕙, 曹蕊, 曹玉华. 毛细管电化学检测法测定光损伤头发中的氨基酸[J]. 苏州科技学院学报(自然科学版), 2008, 25(2): 40-43.
|
|
QIAN H, CAO R, CAO Y H. Determination of cysteine and tyrosine in hair eradiated under UVB by capillary electrophoresis with electrochemical detection[J]. J Suzhou Univ Sci Technol (Nat Sci Ed), 2008, 25(2): 40-43.
|
6 |
WENG Q F, JIN W R. Carbon fiber bundle-Au-Hg dual-electrode detection for capillary electrophoresis[J]. J Chromatogr A, 2002, 971(1/2): 217-223.
|
7 |
XU Z Y, QIN T Y, ZHOU X F, et al. Fluorescent probes with multiple channels for simultaneous detection of Cys, Hcy, GSH, and H2S[J]. TrAC Trends Anal Chem, 2019, 121: 115672.
|
8 |
HUANG Y, SHEN Y J, CHEN T T, et al. Specific detection and determination of cysteine by a luminescent samarium macrocycle-based fluorescent probe platform[J]. New J Chem, 2021, 45(5): 2366-2369.
|
9 |
WANG C, LAN Y X, YUAN F, et al. Chemiluminescent determination of L-cysteine with the lucigenin-carbon dot system[J]. Microchim Acta, 2019, 187(1): 50.
|
10 |
LIU C Y, MIAO Y Q, ZHANG X J, et al. Colorimetric determination of cysteine by a paper-based assay system using aspartic acid modified gold nanoparticles[J]. Microchim Acta, 2020, 187(6): 362.
|
11 |
AMARNATH K, AMARNATH V, AMARNATH K, et al. A specific HPLC-UV method for the determination of cysteine and related aminothiols in biological samples[J]. Talanta, 2003, 60(6): 1229-1238.
|
12 |
RASHEED P A, PANDEY R P, JABBAR K A, et al. Sensitive electrochemical detection of L-cysteine based on a highly stable Pd@Ti3C2Tx (MXene) nanocomposite modified glassy carbon electrode[J]. Anal Methods, 2019, 11(30): 3851-3856.
|
13 |
KHAMCHAROEN W, HENRY C S, SIANGPROH W. A novel L-cysteine sensor using in situ electropolymerization of L-cysteine: potential to simple and selective detection[J]. Talanta, 2022, 237: 122983.
|
14 |
LOMONT J P, SMITH J P. In situ Raman spectroscopy for real time detection of cysteine[J]. Spectrochim Acta Part A, Mol Biomol Spectrosc, 2022, 274: 121068.
|
15 |
XIAO C H, CHEN J H, LIU B, et al. Sensitive and selective electrochemical sensing of L-cysteine based on a caterpillar-like manganese dioxide-carbon nanocomposite[J]. Phys Chem Chem Phys, 2011, 13(4): 1568-1574.
|
16 |
ZHAO W W, XU J J, CHEN H Y. Photoelectrochemical bioanalysis: the state of the art[J]. Chem Soc Rev, 2015, 44(3): 729-741.
|
17 |
王琼, 张伊, 唐浩, 等. 量子点在光电化学传感器中的研究进展[J]. 材料导报, 2022, 36(18): 20-27.
|
|
WANG Q, ZHANG Y, TANG H, et al. Recent progress of quantum dots in photoelectrochemical sensors[J]. Mater Rep, 2022, 36(18): 20-27.
|
18 |
ZHAO W W, XU J J, CHEN H Y. Photoelectrochemical detection of metal ions[J]. Analyst, 2016, 141(14): 4262-4271.
|
19 |
AI L C, WANG Y, ZHOU Y L, et al. Photoelectrochemical biosensor for N6-methyladenosine detection based on enhanced photoactivity of TiO2-X and MoS2 nanocomposite[J]. J Electroanal Chem, 2021, 895: 115444.
|
20 |
LI Y R, LIU G, JI D Z, et al. Smartphone-based label-free photoelectrochemical sensing of cysteine with cadmium ion chelation[J]. Analyst, 2022, 147(7): 1403-1409.
|
21 |
XIAO H J, LIAO X J, WANG H, et al. In situ formation of Bi2MoO6-Bi2S3 heterostructure: a proof-of-concept study for photoelectrochemical bioassay of L-cysteine[J]. Front Chem, 2022, 10: 845617.
|
22 |
ZHANG Y J, YU J R, HUANG W J, et al. Detection of L-cysteine in urine samples based on CdS/TiO2-modified extended-gate field-effect transistor photoelectrochemical sensor[J]. Microchim Acta, 2023, 190(7): 280.
|
23 |
CHEN J D, LI H Y, SHAO D, et al. A photoelectrochemical sensor based on copper-based metal organic framework derivatives for the homogeneous detection of L-cysteine[J]. Microchem J, 2024, 197: 109768.
|
24 |
HUANG L Z, LI J D, WANG Y L, et al. A light-driven enzyme-free photoelectrochemical sensor based on HKUST-1 derived Cu2O/Cu@microporous carbon with g-C3N4 p-n heterojunction for ultra-sensitive detection of L-cysteine[J]. Carbon, 2023, 215: 118466.
|
25 |
YANG H, ZHAO X, WANG H, et al. Sensitive photoelectrochemical immunoassay of Staphylococcus aureus based on one-pot electrodeposited ZnS/CdS heterojunction nanoparticles[J]. Analyst, 2020, 145: 165.
|
26 |
余秀萍. 电化学沉积法制备Ⅱ-Ⅵ族金属硫化物纳米粒子及性能研究[D]. 苏州: 苏州大学, 2010.
|
|
YU X P. Preparation of the Ⅱ-Ⅵ metallic sulfide nanoparticles by electrochemical method and their properties[D]. Suzhou: Suzhou University, 2010.
|
27 |
陈结霞, 张凯凯, 张宾, 等. 电化学沉积ZnS@CdS构建光电化学传感器测定谷胱甘肽[J]. 分析试验室, 2022, 41(5): 523-528.
|
|
CHEN J X, ZHANG K K, ZHANG B, et al. A photoelectrochemical sensor for determination of glutathione constructed by electrochemical deposition of ZnS@CdS[J]. Chin J Anal Lab, 2022, 41(5): 523-528.
|
28 |
WANG C, ZHANG B, CAO J, et al. Organic-inorganic hybrid flower-shaped microspheres appliedin photoelectrochemical sensing[J]. ACS Appl Mater Interfaces, 2022, 14(20): 23743-23755.
|
29 |
LI Y, ZHANG N, ZHAO W W, et al. Polymer dots for photoelectrochemical bioanalysis[J]. Anal Chem, 2017, 89(9): 4945-4950.
|
30 |
SABIR N, KHAN N, VOLKNER J, et al. Photo-electrochemical bioanalysis of guanosine monophosphate using coupled enzymatic reactions at a CdS/ZnS quantum dot electrode[J]. Small, 2015, 11(43): 5844-5850.
|
31 |
SHAIDAROVA L G, ZIGANSHINA S A, BUDNIKOV G K. Electrocatalytic oxidation of cysteine and cystine at a carbon-paste electrode modified with ruthenium(Ⅳ) oxide[J]. J Anal Chem, 2003, 58(6): 577-582.
|
32 |
PIYUSH K S, VELLACHAMY G, DHARMENDRA K Y, et al. Dual electrocatalytic behavior of oxovanadium (Ⅳ) salen immobilized carbon materials towards cysteine oxidation and cystine reduction: graphene versus single walled carbon nanotubes[J]. Chem Select, 2016, 1: 6726-6734.
|
33 |
刘汝涛, 宗万松, 孙凤. 一种利用电化学技术快速鉴别半胱氨酸和胱氨酸的方法: 中国, 200910019947.6[P]. 2009-03-20.
|
|
LIU R T, ZONG W S, SUN F. The invention relates to a method for rapid identification of cysteine and cystine by electrochemical technique: CN, 200910019947.6[P]. 2009-03-20.
|
34 |
JACOBSEN D W, GATAUTIS V J, GREEN R, et al. Rapid HPLC determination of total homocysteine and other thiols in serum and plasma: sex differences and correlation with cobalamin and folate concentrations in healthy subjects[J]. Clin Chem, 1994, 40(6): 873-881.
|
35 |
HUANG Z, WU C Y, LI Y Q, et al. A fluorescent probe for the specific detection of cysteine in human serum samples[J]. Anal Methods, 2019, 11(26): 3280-3285.
|