1 |
COMANDELLA D, GOTTARDO S, RIO-ECHEVARRIA I M, et al. Quality of physicochemical data on nanomaterials: an assessment of data completeness and variability[J]. Nanoscale, 2020, 12(7): 4695-4708.
|
2 |
SCHERZAD A, MEYER T, KLEINSASSER N, et al. Molecular mechanisms of zinc oxide nanoparticle-induced genotoxicity short running title: genotoxicity of ZnO NPs[J]. Materials, 2017, 10(12): 1427-1446.
|
3 |
BEYENE H D, WERKNEH A A, BEZABH H K, et al. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review[J]. Sustainable Mater Technol, 2017, 13: 18-23.
|
4 |
章波, 肖文灿, 徐浩, 等. 不同形貌纳米MgO的制备及其应用研究[J]. 化工新型材料, 2017, 45(5): 43-45.
|
|
ZHANG B, XIAO W C, XU H, et al. Research on preparation and application of nanometer magnesium oxide with different morphologies[J]. New Chem Mater, 2017, 45(5): 43-45.
|
5 |
CASTILLO I F, DE MATTEIS L, MARQUINA C, et al. Protection of 18th century paper using antimicrobial nano-magnesium oxide[J]. Int Biodeterior Biodegrad, 2019, 141: 79-86.
|
6 |
OBEID M M, EDREES S J, SHUKUR M M, et al. Synthesis and characterization of pure and cobalt doped magnesium oxide nanoparticles: insight from experimental and theoretical investigation[J]. Superlattices Microstruct, 2018, 122: 124-139.
|
7 |
GAJENGI A L, SASAKI T, BHANAGE B M, et al. Mechanistic aspects of formation of MgO nanoparticles under microwave irradiation and its catalytic application[J]. Adv Powder Technol., 2017, 28(4): 1185-1192.
|
8 |
MANGALAMPALLI B, DUMALA N, GROVER P. Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles[J]. J Environ Sci, 2018, 66(4): 128-140.
|
9 |
吴明珠, 何梅琳, 邹山梅, 等. 纳米 MgO 对斜生栅藻的毒性效应及致毒机理[J]. 环境化学, 2015, 34(7): 1259-1267.
|
|
WU M Z, HE M L, ZOU S M, et al. Toxicities and mechanisms of MgO nanoparticles to scenedesmus obliquus[J]. Environ Chem, 2015, 34(7): 1259-1267.
|
10 |
何惠敏, 徐长山, 郑博文, 等. 离子选择性微电极用于原位测量离子扩散系数[J]. 应用化学, 2019, 34(12): 1439-1446.
|
|
HE H M, XU C S, ZHENG B W, et al. An ion-selective microelectrode method for in-situ measurement of the diffusion coeffcients of ions[J]. Chinese J Appl Chem, 2019, 34(12): 1439-1446.
|
11 |
GUSTAVSSON J, PLANELL J, ENGEL E. Ion-selective electrodes to monitor osteoblast-like cellular influence on the extracellular concentration of calcium[J]. J Tissue Eng Regen Med, 2013,7(8): 609-620.
|
12 |
CHURCH J, ARMS S M, PATEL P K, et al. Development and characterization of needle-type ion-selective microsensors for in situ determination of foliar uptake of Zn2+ in citrus plants[J]. Electroanalysis, 2018, 30(4): 626-632.
|
13 |
MILLER A J, COOKSON S J, SMITH S J, et al. The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants[J]. J Exp Bot, 2001, 52(356): 541-549.
|
14 |
宋文峰, 王超, 陈荣府, 等. 长期不同施肥下小麦离子吸收对土壤酸化贡献能力的比较[J]. 土壤, 2017, 49(1): 7-12.
|
|
SONG W F, WANG C, CHEN R F, et al. Comparison of contribution of wheat ionic uptake to soil acidification under long-term different fertilization[J]. Soils, 2017, 49(1): 7-12.
|
15 |
刘晓南. MgO纳米粒子抑制镉对大蒜毒性的研究[D]. 长春: 东北师范大学, 2020.
|
|
LIU X N. Study on MgO nanoparticles inhibiting the toxcity of cadmium to garlic[D]. Changchun: Northeast Normal University, 2020.
|
16 |
张欢欢. 玉米根系微环境改变与根离子吸收的关系[D]. 烟台: 鲁东大学, 2014.
|
|
ZHANG H H. Changes in the rhizosphere microenvironment in relation to the ion absorption in maize roots[D]. Yantai: Ludong University, 2014.
|
17 |
李清芳, 辛天蓉, 马成仓, 等. pH值对小麦种子萌发和幼苗生长代谢的影响[J]. 安徽农业科学, 2003, 31(2): 185-187.
|
|
LI Q F, XIN T R, MA C C, et al. Effect of pH value on wheat seed germination and seedlings growth and metabolism[J]. J Anhui Agric Sci, 2003, 31(2): 185-187.
|
18 |
DIMKPA C O, LATTA D E, MCLEAN J E, et al. Fate of CuO and ZnO nano- and microparticles in the plant environment[J]. Environ Sci Technol, 2013, 47(9): 4734-4742.
|
19 |
SHANG H, GUO H, MA C, et al. Maize (Zea mays L.) root exudates modify the surface chemistry of CuO nanoparticles: altered aggregation, dissolution and toxicity[J]. Sci Total Environ, 2019, 690: 502-510.
|
20 |
王琪. 小麦根系在纳米银及其与银离子共存条件下对银的吸收研究[D]. 苏州:苏州科技大学, 2017.
|
|
WANG Q. Uptake of silver by wheat root system in the presence of silver nanoparticles or it and silver ion[D]. Suzhou: Suzhou University of Science and Technology, 2017.
|
21 |
GAO X, AVELLAN A, LAUGHTON S, et al. CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil[J]. Environ Sci Technol, 2018, 52(5): 2888-2897.
|
22 |
陈泽林. ZnO NPs对小麦的毒性及其与培养条件和生长阶段的关系研究[D]. 长春: 东北师范大学, 2017.
|
|
CHEN Z L. Study on the toxicity of ZnO NPs to wheat and its relationship with culture conditions and growth stages[D]. Changchun: Northeast Normal University, 2017.
|
23 |
RENWICK L C, DONALDSON K, CLOUTER A. Impairment of alveolar macrophage phagocytosis by ultrafine particles[J]. Toxicol Appl Pharmacol, 2001, 172(2): 119-127.
|
24 |
SHAYMURAT T, GU J X, XU C S, et al. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study[J]. Nanotoxicology, 2012, 6(3): 241-248.
|