Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (8): 1274-1284.DOI: 10.19894/j.issn.1000-0518.210493
• Full Papers • Previous Articles Next Articles
Yue-Hua ZHAO1,2, Da-Peng WANG1,2()
Received:
2021-10-03
Accepted:
2021-11-15
Published:
2022-08-01
Online:
2022-08-04
Contact:
Da-Peng WANG
About author:
wdp@ciac.ac.cnSupported by:
CLC Number:
Yue-Hua ZHAO, Da-Peng WANG. Coadsorption Kinetics of Amino‑Functionalized Graphene Oxide and Fatty Acids at the Water/Oil Interface[J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1274-1284.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210493
Fig.3 Dynamic interfacial tension of the octane/water interface with time for single systems of sole PA and NH2-PEG-GO: (a1) 0.05 mg/mL PA, (a2) 5 mg/mL PA, (b1) 0.1 mg/mL NH2-PEG-GO, (b2) 5 mg/mL NH2-PEG-GO and binary systems of (c1) 0.05 mg/mL PA and 0.1 mg/mL NH2-PEG-GO
序号 No. | 组成 Compound | 流体力学半径 Rh/nm | 界面吸附面积 A/nm2 | 本体扩散系数 D/(m2·s-1) |
---|---|---|---|---|
1 2 | PA | 5.73 | 0.36 | 7.5×10-10 |
NH2?PEG?GO | 80 | 4329 | 3.06×10-12 |
Table 1 Basic parameters of PA and NH2?PEG?GO
序号 No. | 组成 Compound | 流体力学半径 Rh/nm | 界面吸附面积 A/nm2 | 本体扩散系数 D/(m2·s-1) |
---|---|---|---|---|
1 2 | PA | 5.73 | 0.36 | 7.5×10-10 |
NH2?PEG?GO | 80 | 4329 | 3.06×10-12 |
Fig.4 (A) Dynamic interfacial tension data plotted against t-1/2, (B) Effective diffusion coefficient and adsorption barrier of different mass concentration NH2-PEG-GO
Fig.9 Time evolution of interfacial tension between 0.1 mg/mL NH2-PEG-GO solutions and octane solutions at different fatty acids mass concentrations of (A) C10, (B) C16, (C) C20, (D) The curves of the equilibrium IFT vs. the mass concentration of fatty acids with different linear alkyl groups, NH2-PEG-GO at fixed 0.1 mg/mL
序号 No. | 组成 Composition | 数均相对分子质量 Mn | 流体力学半径 Rh/nm | 本体扩散系数 D/(m2·s-1) |
---|---|---|---|---|
1 2 | C10 | 172.26 | 4.33 | 9.9×10-10 |
C16 | 256.42 | 5.73 | 7.5×10-10 | |
3 | C20 | 312.53 | 6.59 | 6.5×10-10 |
Table 2 Basic parameters of fatty acids
序号 No. | 组成 Composition | 数均相对分子质量 Mn | 流体力学半径 Rh/nm | 本体扩散系数 D/(m2·s-1) |
---|---|---|---|---|
1 2 | C10 | 172.26 | 4.33 | 9.9×10-10 |
C16 | 256.42 | 5.73 | 7.5×10-10 | |
3 | C20 | 312.53 | 6.59 | 6.5×10-10 |
1 | 范竞存, 余昊, 陈杰, 等. 非常规油气开采中的微纳米力学问题研究进展[J]. 中国科学技术大学学报, 2017, 47(2): 142-154. |
FAN J C, YU H, CHEN J, et al. Research progress of micro/nano mechanical problems in unconventional oil and gas exploitation[J]. J Univ Sci Technol China, 2017, 47(2): 142-154. | |
2 | GBADAMOSI A O, JUNIN R, MANAN M A, et al. Recent advances and prospects in polymeric nanofluids application for enhanced oil recovery[J]. J Ind Eng Chem, 2018, 66: 1-19. |
3 | LI K W, WANG D, JIANG S S. Review on enhanced oil recovery by nanofluids[J]. Oil Gas Sci Technol-Rev IFP Energies Nouvelles, 2018, 73(37): 1-26. |
4 | MELROSE J C, BRANDNER C F. Role of capillary forces in determining microscopic displacement efficiency for oil recovery by waterflooding[J]. J Can Pet Technol, 1974, 13(4): 54-62. |
5 | 岳湘安, 侯吉瑞, 吕鑫, 等. 驱油剂界面特性和流变性对石油采收率的综合影响[J]. 应用化学, 2008, 25(8): 904-908. |
YUE X A, HOU J R, LV X, et al. Synergistic effect of Interfacial and rheological properties of displacing fluid in chemical flooding[J]. Chinese J Appl Chem, 2008, 25(8): 904-908. | |
6 | 郜思衡, 康诗钊, 李向清, 等. 氧化石墨烯/超细银粒子复合物的制备及其光电性能[J]. 应用化学, 2020, 37(8): 923-929. |
GAO S H, KANG S Z, LI X Q, et al. Preparation and photoelectric performance of graphene oxide/ultrafine silver composite[J]. Chinese J Appl Chem, 2020, 37(8): 923-929. | |
7 | LEI Y, FANG C, XU J, et al. Enhanced photoelectric properties of CdSe/graphene composites with various contents of graphene[J]. Ceram Int, 2016, 42(4): 5326-5330. |
8 | 张雅静, 王晓辉, 徐亚娟, 等. 石墨烯纳米载药体系的制备及对肿瘤细胞的杀伤作用[J]. 应用化学, 2021, 38(6): 693-703. |
ZHANG Y J, WANG X H, XU Y J, et al. Preparation of graphene nano-drug carrier system and its killing effecton tumor cells[J]. Chinese J Appl Chem, 2021, 38(6): 693-703. | |
9 | GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chem Rev, 2016, 116(9): 5464-5519. |
10 | KUDIN K N, CAR R. Why are water‑hydrophobic interfaces charged?[J]. J Am Chem Soc, 2008, 130(12): 3915-3919. |
11 | LUO D, WANG F, ZHU J, et al. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: high performance at low concentration[J]. Proc Natl Acad Sci USA, 2016, 113(28): 7711-7716. |
12 | TOOR A, HELMS B A, RUSSELL T P. Effect of nanoparticle surfactants on the breakup of free-falling water jets during continuous processing of reconfigurable structured liquid droplets[J]. Nano Lett, 2017, 17(5): 3119-3125. |
13 | SUN Z, FENG T, RUSSELL T P. Assembly of graphene oxide at water/oil interfaces: tessellated nanotiles[J]. Langmuir, 2013, 29(44): 13407-13413. |
14 | FENG T, HOAGLAND D A, RUSSELL T P. Assembly of acid-functionalized single-walled carbon nanotubes at oil/water interfaces[J]. Langmuir, 2014, 30(4): 1072-1079. |
15 | LIU X, SHI S, LI Y, et al. Liquid tubule formation and stabilization using cellulose nanocrystal surfactants[J]. Angew Chem Int Ed, 2017, 56(41): 12594-12598. |
16 | HUANG C, CHAI Y, JIANG Y, et al. The interfacial assembly of polyoxometalate nanoparticle surfactants[J]. Nano Lett, 2018, 18(4): 2525-2529. |
17 | 宋先雨, 方申文, 陶俊, 等. 环烷酸对原油乳状液稳定性影响的研究进展[J]. 精细石油化工, 2015, 32(1): 47-52. |
SONG X Y, FANG S W, TAO J, et al. Effect of naphthenic acid on stability of crude oil emulsion[J]. Spec Petrochem, 2015, 32(1): 47-52. | |
18 | LIN Y, JIN J, SONG M. Preparation and characterisation of covalent polymer functionalized graphene oxide[J]. J Mater Chem, 2011, 21(10): 3455-3461. |
19 | LI T, LIU H, XI G, et al. One-step reduction and PEIylation of PEGylated nanographene oxide for highly efficient chemo-photothermal therapy[J]. J Mater Chem B, 2016, 4(17): 2972-2983. |
20 | AMARO-GAHETE J, BENÍTEZ A, OTERO R, et al. A comparative study of particle size distribution of graphene nanosheets synthesized by an ultrasound-assisted method[J]. Nanomaterials, 2019, 9(2): 152. |
21 | GOEBEL A, LUNKENHEIMER K. Interfacial tension of the water/n-alkane interface[J]. Langmuir, 1997, 13(2): 369-372. |
22 | ZEPPIERI S, RODRÍGUEZ J, LÓPEZ DE RAMOS A L. Interfacial tension of alkane + water systems[J]. J Chem Eng Data, 2001, 46(5): 1086-1088. |
23 | CUI M, MIESCH C, KOSIF I, et al. Transition in dynamics as nanoparticles jam at the liquid/liquid interface[J]. Nano Lett, 2017, 17(11): 6855-6862. |
24 | KUTUZOV S, HE J, TANGIRALA R, et al. On the kinetics of nanoparticle self-assembly at liquid/liquid interfaces[J]. Phys Chem Chem Phys, 2007, 9(48): 6351-6358. |
25 | WANG D, YORDANOV S, PAROOR H M, et al. Probing diffusion of single nanoparticles at water-oil interfaces[J]. Small, 2011, 7(24): 3502-3507. |
26 | WANG D, PEVZNER L, LI C, et al. Layer with reduced viscosity at water-oil interfaces probed by fluorescence correlation spectroscopy[J]. Phys Rev E, 2013, 87(1): 012403. |
27 | WANG D, ZHU Y L, ZHAO Y, et al. Brownian diffusion of individual janus nanoparticles at water/oil interfaces[J]. ACS Nano, 2020, 14(8): 10095-10103. |
28 | EASTOE J, DALTON J S. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface[J]. Adv Colloid Interface Sci, 2000, 85(2): 103-144. |
29 | GU S, XU Z, YANG X. Molecular insight into the adsorption thermodynamics and interfacial behavior of GOs at the liquid-liquid lnterface[J]. J Phys Chem B, 2021, 125(7): 1924-1935. |
30 | CREIGHTON M A, OHATA Y, MIYAWAKI J, et al. Two-dimensional materials as emulsion stabilizers: interfacial thermodynamics and molecular barrier properties[J]. Langmuir, 2014, 30(13): 3687-3696. |
31 | WARD A, TORDAI L. Time-dependence of boundary tensions of solutions I. the role of diffusion in time-effects[J]. J Chem Phys, 1946, 14: 453-461. |
32 | FAINERMAN V B, MAKIEVSKI A V, MILLER R. The analysis of dynamic surface tension of sodium alkyl sulphate solutions, based on asymptotic equations of adsorption kinetic theory[J]. Colloids Surf A: Physicochem Eng Asp, 1994, 87(1): 61-75. |
33 | MOORKANIKKARA S N, BLANKSCHTEIN D. Possible existence of convective currents in surfactant bulk solution in experimental pendant-bubble dynamic surface tension measurements[J]. Langmuir, 2009, 25(3): 1434-1444. |
34 | MUHAMAD R, MISRAN M. Adsorption kinetics of partially ionized fatty acids at oil/water interface of their monomeric and liposomal solution[J]. Colloids Surf A: Physicochem Eng Asp, 2017, 528: 23-29. |
35 | SAUERER B, STUKAN M, BUITING J, et al. Dynamic asphaltene-stearic acid competition at the oil-water interface[J]. Langmuir, 2018, 34(19): 5558-5573. |
36 | TOUWSLAGER F J, SONDAG A H M. Order and disorder in n-alkylcarboxylic acid monolayers. chain-length dependence and lateral interaction effects[J]. Langmuir, 1994, 10(4): 1028-1033. |
37 | KANICKY J R, PONIATOWSKI A F, MEHTA N R, et al. Cooperativity among molecules at interfaces in relation to various technological processes: effect of chain length on the pKa of fatty acid salt solutions[J]. Langmuir, 2000, 16(1): 172-177. |
38 | HUBBE M, MCLEAN D, STACK K, et al. Self-assembly of alkyl chains of fatty acids in papermaking systems: a review of related pitch issues, hydrophobic sizing, and pH effects[J]. Bioresources, 2020, 15(2): 4591-4635. |
39 | SHIAO S Y, PATIST A, FREE M L, et al. The importance of sub-angstrom distances in mixed surfactant systems for technological processes[J]. Colloids Surf A: Physicochem Eng Asp, 1997, 128(1): 197-208. |
[1] | CAI Bangxin, ZHANG Qiqi, GANG Hongze, LIU Jinfeng, YANG Shizhong, MU Bozhong. Bio-based Zwitterionic Surfactants Derived from Waste Cooking Oil and Their Interfacial Performance [J]. Chinese Journal of Applied Chemistry, 2016, 33(7): 798-803. |
[2] | DING Wei, SONG Chenglong, LI Boyang. Synthesis of Nonylphenol Betaine Amphoteric Surfactant and Its Tolerance to Temperature and Salt [J]. Chinese Journal of Applied Chemistry, 2015, 32(8): 922-930. |
[3] | LIN Meijuan, AN Qi, HU Zhen, ZENG Huijuan, LING Qidan*. Polyethylene, Polypropylene or Polystyrene Photoluminescence Composites Doped with Fatty Acid Europium Complexes [J]. Chinese Journal of Applied Chemistry, 2014, 31(10): 1164-1170. |
[4] | DING Wei*, LI Jinhong, YU Tao, XING Xinxin, ZHANG Wei, YANG Liu. Surface/Interface Performance of New Sulfobetaine/Polyacrylamide System [J]. Chinese Journal of Applied Chemistry, 2013, 30(11): 1270-1275. |
[5] | KANG Wanli*, LI Yuan, SHAN Xiuhua, FAN Haiming, CUI Wenhong, ZHANG Xin. Stability Dynamic Characteristics of Alkali/surfactant/polymer Flooding Crude Oil Emulsion [J]. Chinese Journal of Applied Chemistry, 2012, 29(04): 428-433. |
[6] | HOU Xiaoyu, LIU Kaiqang, FANG Yu*. Progress in the Studies of Low-Molecular Mass Gelators with Phase-Selective Gelation Properties [J]. Chinese Journal of Applied Chemistry, 2011, 28(11): 1221-1228. |
[7] | YU Tao, YANG Yang, ZHANG Chun-Hui, LI An-Jun, GAO Xiao-Yu, DING Wei, QU Guang-Miao. Research of the Interfacial Properties of Hexadecane Toluene Sulfonate [J]. Chinese Journal of Applied Chemistry, 2009, 26(09): 1011-1014. |
[8] | Liu Muxin, Xu Guiying, Xu Yongli, Li Fang, Li Ganzuo. Interfacial Tension between Mixed Soluton of Vegetable Oil Acid/Tween-60 and Crude Oil [J]. Chinese Journal of Applied Chemistry, 1996, 0(1): 54-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||