
Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (6): 990-999.DOI: 10.19894/j.issn.1000-0518.210256
• Full Papers • Previous Articles Next Articles
Qin YANG, Ning-Hua CHEN, Yu-Jie ZHANG, Zhi-Xiang YE, Ying-Chun YANG()
Received:
2021-05-26
Accepted:
2021-08-29
Published:
2022-06-01
Online:
2022-06-27
Contact:
Ying-Chun YANG
About author:
yangyingchun@cuit.edu.cnSupported by:
CLC Number:
Qin YANG, Ning-Hua CHEN, Yu-Jie ZHANG, Zhi-Xiang YE, Ying-Chun YANG. Preparation of Cerium Zirconium Composite Oxide Modified Glassy Carbon Electrode and the Detection of Pb2+ in Water Samples[J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 990-999.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210256
电极 Electrode | 方法 Method | 线性范围 Linear range/(μmol·L-1) | 检测限 LOD/(μmol·L-1) | 参考文献 Ref. |
---|---|---|---|---|
铈锆氧化物修饰玻碳电极 Ce zroxide/GCE | 方波阳极溶出伏安法 SWASV | 0.02~0.5 | 0.006 | [ |
碳泡沫修饰金电极 Au(5.4%)?CF/gold electrodes | 微分脉冲阳极溶出伏安法 DPASV | 0.1~2.0 | 0.003 6 | [ |
聚苯胺/铋修饰石墨烯电极 PANI/Bi/graphene electrodes | 方波阳极溶出伏安法 SWASV | 0.1~1.1 | 0.000 3 | [ |
谷胱甘肽修饰电极 GSH?SPCNFE | 方波阳极溶出伏安法 SWASV | 0.005~0.725 | 0.015 | [ |
三氧化二锑修饰碳糊电极 Ce2Zr2O7.04/GCE | 方波阳极溶出伏安法 SWASV | 0.048~0.483 | 0.003 4 | [ |
铈锆复合氧化物修饰电极 Ce2Zr2O7.04/GCE | 方波阳极溶出伏安法 SWASV | 0.002 5~3.5 | 0.000 198 | 本工作 This work |
Table 1 Comparison of determination of Pb2+ by different electrochemical sensors
电极 Electrode | 方法 Method | 线性范围 Linear range/(μmol·L-1) | 检测限 LOD/(μmol·L-1) | 参考文献 Ref. |
---|---|---|---|---|
铈锆氧化物修饰玻碳电极 Ce zroxide/GCE | 方波阳极溶出伏安法 SWASV | 0.02~0.5 | 0.006 | [ |
碳泡沫修饰金电极 Au(5.4%)?CF/gold electrodes | 微分脉冲阳极溶出伏安法 DPASV | 0.1~2.0 | 0.003 6 | [ |
聚苯胺/铋修饰石墨烯电极 PANI/Bi/graphene electrodes | 方波阳极溶出伏安法 SWASV | 0.1~1.1 | 0.000 3 | [ |
谷胱甘肽修饰电极 GSH?SPCNFE | 方波阳极溶出伏安法 SWASV | 0.005~0.725 | 0.015 | [ |
三氧化二锑修饰碳糊电极 Ce2Zr2O7.04/GCE | 方波阳极溶出伏安法 SWASV | 0.048~0.483 | 0.003 4 | [ |
铈锆复合氧化物修饰电极 Ce2Zr2O7.04/GCE | 方波阳极溶出伏安法 SWASV | 0.002 5~3.5 | 0.000 198 | 本工作 This work |
Fig.7 (A) Repeatability measurement on the same electrode (repeated modification for ten times); (B) Long-term stability measurement of Ce2Zr2O7.04/GCE (repeated 10 times within 10 days)
样品 Sample | 测量值 Detected/(μmol·L-1) | 加标量 Added/(μmol·L-1) | 测量总值 Found/(μmol·L-1) a | 相对标准偏差 RSD/% b | 回收率 Recovery/% |
---|---|---|---|---|---|
牛奶 Milk | / | 1.0 | 1.03 | 1.45 | 103.0 |
2.5 | 2.44 | 1.20 | 97.6 | ||
矿泉水 Mineral water | / | 1.0 | 1.02 | 1.29 | 102.0 |
2.5 | 2.59 | 1.31 | 103.6 | ||
自来水 Tap water | 0.003 1 | 1.0 | 1.03 | 1.22 | 103.0 |
2.5 | 2.61 | 1.19 | 104.4 |
Table 2 Detection of Pb2+ in actual samples
样品 Sample | 测量值 Detected/(μmol·L-1) | 加标量 Added/(μmol·L-1) | 测量总值 Found/(μmol·L-1) a | 相对标准偏差 RSD/% b | 回收率 Recovery/% |
---|---|---|---|---|---|
牛奶 Milk | / | 1.0 | 1.03 | 1.45 | 103.0 |
2.5 | 2.44 | 1.20 | 97.6 | ||
矿泉水 Mineral water | / | 1.0 | 1.02 | 1.29 | 102.0 |
2.5 | 2.59 | 1.31 | 103.6 | ||
自来水 Tap water | 0.003 1 | 1.0 | 1.03 | 1.22 | 103.0 |
2.5 | 2.61 | 1.19 | 104.4 |
1 | 蔡文洁. 饮用水铅污染问题——公共健康的巨大挑战[J]. 中国环境科学, 2010, 30(8): 1025. |
CAI W J. Lead contamination in drinking water ——a huge public health challenge[J]. China Environ Sci, 2010, 30(8): 1025. | |
2 | 张强华, 石莹莹, 熊清平, 等. 分子印迹壳聚糖/凹土分离富集-火焰原子吸收光谱测定痕量铅[J]. 应用化学, 2011, 28(9): 1073-1081. |
ZHANG Q H, SHI Y Y, XIONG Q P, et al. Separation and enrichment of molecularly imprinted chitosan/attapulgite for determination of trace lead by flame atomic absorption spectrometry[J]. Chinese J Appl Chem, 2011, 28(9): 1073-1081. | |
3 | CUI L, WU J, JU H X. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials[J]. Biosens Bioelectron, 2015, 63: 276-286. |
4 | 程明明, 高永军, 张文彦, 等. 推动铅产业转型升级防止血铅事件[J]. 中国有色金属, 2012(9): 62-63. |
CHENG M M, GAO Y J, ZHANG W Y, et al. Promote the transformation and upgrading of the lead industry to prevent lead incidents[J]. Chinese Nonferrous Met, 2012(9): 62-63. | |
5 | 徐思远, 雷平, 晋冠平. 三聚氰胺基螯合树脂/碳纳米管修饰充蜡石墨电极阳极溶出伏安法测定铅和镉[J]. 应用化学, 2014, 31(2): 206-211. |
XU S Y, LEI P, JIN G P. Determination of lead and cadmium by anodic stripping voltammetry with melamine-based chelating resin/carbon nanotubes modified wax-filled graphite electrode[J]. Chinese J Appl Chem, 2014, 31(2): 206-211. | |
6 | GUMPU M B, SETHURAMAN S, KRISHNAN U M, et al. A review on detection of heavy metal ions in water-an electrochemical approach[J]. Sens Actuators B: Chem, 2015, 213: 515-533. |
7 | 肖冰, 薛培英, 韦亮, 等. 基于田块尺度的农田土壤和小麦籽粒镉砷铅污染特征及健康风险评价[J]. 环境科学, 2020, 41(6): 2869-2877. |
XIAO B, XUE P Y, WEI L, et al. Cadmium, arsenic, lead pollution characteristics and health risk assessment of farmland soil and wheat grain based on field scale[J]. Chinese J Environ Sci, 2020, 41(6): 2869-2877. | |
8 | 吴婷, 李小平, 蔡月, 等. 铅污染不同粒径土壤的重金属地球化学行为与风险[J]. 中国环境科学, 2017, 37(11): 4212-4221. |
WU T, LI X P, CAI Y, et al. Geochemical behavior and risk of heavy metals in soils with different particle sizes contaminated by lead[J]. China Environ Sci, 2017, 37(11): 4212-4221. | |
9 | 方雅莉, 朱宗强, 赵宁宁, 等. 桉树遗态磷灰石材料对铅污染土壤的钝化修复效应[J]. 环境科学, 2020, 41(3): 1498-1504. |
FANG Y L, ZHU Z Q, ZHAO N N, et al. Passivation effect of eucalyptus relic apatite material on lead contaminated soil[J]. Chinese J Environ Sci, 2020, 41(3): 1498-1504. | |
10 | 李立平, 赵强, 张红毅, 等. 钙、氯对磷酸盐稳定污染土壤中铅的促进作用研究[J]. 环境科学学报, 2017, 37(11): 4344-4351. |
LI L P, ZHAO Q, ZHANG H Y, et al. Facilitating effect of calcium and chlorine on stabilization of lead in contaminated soil by phosphate[J]. Acta Sci Circum, 2017, 37(11): 4344-4351. | |
11 | ARAGAY G, MERKO A. Nanomaterials application in electrochemical detection of heavy metals[J]. Electrochim Acta, 2012, 84: 49-61. |
12 | HU B, WANG H, WU Z, et al. Chip-based array magnetic solid phase microextraction on-line coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in cells[J]. Analyst, 2015, 140(16): 5619-5626. |
13 | SILVA E L, ROLDAN P D S, GINE M F. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry[J]. J Hazard Mater, 2009, 171(1/2/3): 1133-1138. |
14 | LO J M, WEI J C. Determination of Arsenic and mercury in various environmental matrices by chemical neutron activation analysis[J]. J Chin Soc-Taip, 1999, 46(4): 623-632. |
15 | LOSEV V N, BUYKO O V, TROFIMCHUK A K, et al. Silica sequentially modified with polyhexamethylene guanidine and Arsenazo I for preconcentration and ICP-OES determination of metals in natural waters[J]. Microchem J, 2015, 123: 84-89. |
16 | PUJOL L, EVRARD D, GROENEN-SERRANO K, et al. Electrochemical sensors and devices for heavy metals assay in water: the French groups' contribution[J]. Front Chem, 2014, 2: 19. |
17 | FELDMANN J, SALAÜN, PASCAL, et al. Critical review perspective: elemental speciation analysis methods in environmental chemistry-moving towards methodological integration[J]. Environ Chem, 2009, 6: 275-289. |
18 | MAZLOOMIFA A, KHATIBI N. Preconcentration and determination of lead by solidification of floated organic drop coupled with nanodrop spectrophotometry[J]. Adv Mater Res, 2013, 829: 825-830. |
19 | 吴倩, 毕洪梅, 韩晓军. 重金属离子的电化学检测研究进展[J]. 分析化学, 2021, 49(3): 330-340. |
WU Q, BI H M, HAN X J. Research progress in electrochemical detection of heavy metal ions[J]. Chinese J Anal Chem, 2021, 49(3): 330-340. | |
20 | BASHIR N, AKHTAR M, NAWAZ H Z R, et al. A high performance electrochemical sensor for Pb2+ ions based on carbon nanotubes functionalized CoMn2O4 nanocomposite[J]. Chem Select, 2020, 5(26): 7909-7918. |
21 | HE Y, MA L, ZHOU L Y, et al. Preparation and application of bismuth/MXene nano-composite as electrochemical sensor for heavy metal ions detection[J]. Nanomaterials, 2020, 10(5): 866-876. |
22 | LI S S, JIANG M, JIANG T J, et al. Competitive adsorption behavior toward metal ions on nano-Fe/Mg/Ni ternary layered double hydroxide proved by XPS: evidence of selective and sensitive detection of Pb(Ⅱ)[J]. J Hazard Mater, 2017, 338: 1-10. |
23 | LI P H, LI Y X, CHEN S H, et al. Sensitive and interference-free electrochemical determination of Pb(Ⅱ) in wastewater using porous Ce-Zr oxide nanospheres[J]. Sens Actuators B: Chem, 2018, 257: 1009-1020. |
24 | JAMPAIAH D, REDDY S T, KANDJANI A E, et al. Fe-doped CeO2 nanorods for enhanced peroxidase-like activity and their application towards glucose detection[J]. J Mater Chem B, 2016, 4(22): 3874-3885. |
25 | GALTAYRIES A, SPORKEN R, RIGA J, et al. XPS comparative study of ceria/zirconia mixed oxides: powders and thin film characterization[J]. J Electron Spectrocs, 1998, 88/89/90/91: 951-956. |
26 | SUKONKET T, KHAN A, SAHA B, et al. Influence of the catalyst preparation method, surfactant amount, and steam on CO2 reforming of CH4 over 5Ni/Ce0.6Zr0.4O2 catalysts[J]. Energ Fuel, 2011, 25(3): 864-877. |
27 | REDDY B M, KHAN A. Nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 mixed oxides: influence of supporting oxide on thermal stability and oxygen storage properties of ceria[J]. Catal Surv Asia, 2005, 9(3): 155-171. |
28 | SAJEEVAN A C, SAJITH V. A study on oxygen storage capacity of zirconium-cerium-oxide nanoparticles[J]. Adv Chem Res, 2013, 685: 123-127. |
29 | RUTYNA I, KOROLCZUK M. Determination of lead and cadmium by anodic stripping voltammetry at bismuth film electrodes following double deposition and stripping steps[J]. Sensor Actuat B: Chem, 2014, 204: 136-141. |
30 | XU R X, YU X Y, GAO C, et al. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: the use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection[J]. Anal Chim Acta, 2013, 790: 31-38. |
31 | BALDRIANOVA L, AGRAFIOTOU P, SVANCARA I, et al. The effect of acetate concentration, solution pH and conductivity on the anodic stripping voltammetry of lead and cadmium ions at in situ bismuth-plated carbon microelectrodes[J]. Electroanal Chem, 2011, 660(1): 31-36. |
32 | SHARMA R K, PURI A, MONGA Y, et al. Acetoacetanilide-functionalized Fe3O4 nanoparticles for selective and cyclic removal of Pb2+ ions from different charged wastewaters[J]. J Mater Chem A, 2014, 2: 12888-12898. |
33 | LIU Z G, CHEN X, LIU J H, et al. Well-arranged porous Co3O4 microsheets for electrochemistry of Pb(Ⅱ) revealed by stripping voltammetry[J]. Electrochem Commun, 2013, 30: 59-62. |
34 | WEI X, LAN Z, LIU S. Development of gold-doped carbon foams as a sensitive electrochemical sensor for simultaneous determination of Pb(Ⅱ) and Cu(Ⅱ)[J]. Chem Eng J, 2016, 284: 650-656. |
35 | WANG Z, LI L, LIU E. Graphene ultrathin film electrodes modified with bismuth nanoparticles and polyaniline porous layers for detection of lead and cadmium ions in acetate buffer solutions[J]. Thin Solid Films, 2013, 544: 362-367. |
36 | PÉREZ-RÀFOLS C, SERRANO N, DÍAZ-CRUZ J M, et al. Glutathione modified screen-printed carbon nanofiber electrode for the voltammetric determination of metal ions in natural samples[J]. Talanta, 2016, 155: 8-13. |
37 | SVOBODOVÁ E, BALDRIANOVÁ L, HOEVAR S B, et al. Electrochemical stripping analysis of selected heavy metals at antimony trioxide-modified carbon paste electrode[J]. Int J Electrochem Sci, 2012, 7(1): 197-21. |
38 | WEI Y, GAO C, MENG F L, et al. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(Ⅱ), lead(Ⅱ), copper(Ⅱ), and mercury(Ⅱ): an interesting favorable mutual interference[J]. J Phys Chem C, 2011, 116: 1034-1041. |
[1] | XIONG Hai-Tao, WU Rui, WU Ying-Chun. Electrochemiluminescence Determination of Carbamazepine Based on the Nafion-Carbon Nanotube Modified Electrode [J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 731-738. |
[2] | SI Xiaojing, ZHU Wenjing, LI Xiang, LI Li, CHEN Zichao, DING Yaping. Determination of Ofloxacin in Medicine via Poly(p-aminobenzene sulfonic acid)/Graphene Electrochemical Modified Electrode [J]. Chinese Journal of Applied Chemistry, 2020, 37(6): 726-732. |
[3] | ZHANG Ya, ZHENG Jianbin. Graphene Modified Glassy Carbon Electrode for Selective Determination of Metol in the Presence of Hydroquinone [J]. Chinese Journal of Applied Chemistry, 2016, 33(1): 103-107. |
[4] | HE Fengyun ,PAN Zhaorui,ZHOU Hong,LIU Huan,YU Jing,GU Xiaoyan,TANG Pengpeng. Electrochemical Behavior and Determination of Pyridoxine Hydrochloride at Poly p-Aminobenzene Sulfonic Acid Modified Electrode [J]. Chinese Journal of Applied Chemistry, 2015, 32(2): 225-231. |
[5] | ZHANG Ya1*, DU Fangyan1, ZHENG Jianbin2. Electrochemical Behavior and Determination of Calcium Dobesilate at Graphene Modified Glassy Carbon Electrode [J]. Chinese Journal of Applied Chemistry, 2014, 31(07): 860-864. |
[6] | QU Fengjin, CHEN Fang, HOU Xiuzhang, MA Xiaoyan*. Research Progress in the Sensor Application of Ferrocene and Its Derivatives [J]. Chinese Journal of Applied Chemistry, 2013, 30(12): 1393-1398. |
[7] | LI Yang, LI Jinzhou*,PANG Xiaozhe. Selective Determination of Xanthines Based on Composite Film Modified Glassy Carbon Electrode [J]. Chinese Journal of Applied Chemistry, 2013, 30(05): 578-583. |
[8] | LI Juanjuan, LI Jiangyuan*, NIAN Zuoquan. Preparation, Characterization and Application of Research of Novel Poly N,N-Dimethylaniline/Multiwalled Carbon Nanotubes Modified Electrode [J]. Chinese Journal of Applied Chemistry, 2013, 30(03): 360-366. |
[9] | LI Na, XIAO Yinghong*, LU Jia, WANG Yanping, XU Chongzheng, YANG Xiaodi*. Supercapacitive of Carboxyl Graphene-Based Electroconductive Polypyrrole Composite [J]. Chinese Journal of Applied Chemistry, 2013, 30(03): 354-359. |
[10] | LIAO Denghui1, CHEN Zhen1*, GUO Zhongcheng1, LU Lifang1. Preparation of New Stainless Steel Substrate Lead Dioxide-Tungsten Carbide Composite Inert Anode Material [J]. Chinese Journal of Applied Chemistry, 2013, 30(02): 196-202. |
[11] | ZHANG Lianming, LI Jianping*, WEI Ge. Synthesis of Magnetic Nickelous Hexacyanoferrate Hanoparticles and Preparation of Modified Electrodes [J]. Chinese Journal of Applied Chemistry, 2012, 29(10): 1199-1205. |
[12] | ZHAO Yongxin, LI Li, WANG Ku, LU Tianhong, YANG Xiaodi*, LI Huihui *. Application of Graphene-chitosan Modified Electrode for the Detection of Pentachlorophenol in Environmental Water [J]. Chinese Journal of Applied Chemistry, 2012, 29(10): 1206-1211. |
[13] | ZHANG Yunhuai1, DONG Xizhe1*, XIAO Peng2, HE Huichao1, LI Xiaoling1. Detection of Insulin by Nickel Nanoparticles Modified Titanium Oxide Nanotube Electrode [J]. Chinese Journal of Applied Chemistry, 2012, 29(08): 948-953. |
[14] | MA Xinying*,WU Yifang, LI Xia. Preparation of Graphene-modified Electrode and Voltammetric Determination of Acetaminophen [J]. Chinese Journal of Applied Chemistry, 2012, 29(07): 824-829. |
[15] | CHEN Huan, MA Wei, SUN Dengming*. Simultaneous Determination of Hydroquinone and Catechol at the Silver Doped Poly(L-methionine) Modified Glassy Carbon Electrode [J]. Chinese Journal of Applied Chemistry, 2012, 29(05): 576-584. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||