
Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (5): 828-836.DOI: 10.19894/j.issn.1000-0518.210209
• Full Papers • Previous Articles Next Articles
Received:
2021-04-27
Accepted:
2021-09-26
Published:
2022-05-01
Online:
2022-05-24
Contact:
Jin-Zhi LYU
About author:
lvjinzhi208@126.comSupported by:
CLC Number:
Jin-Zhi LYU, Xin-Hao ZHANG. Preparation of Room⁃Temperature Phosphorescence Quantum Dots Functionalized with Choline Oxidase and Quantitative Determination of Choline Chloride[J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 828-836.
Fig.2 (A) Relation between n(Mn2+)∶n(Mn2++Zn2+) and RTP intensity of ChOx RTP QDs; (B) Relation between n(S2-)/n(Mn2++Zn2+)and RTP intensity of ChOx RTP QDs; (C) Relation between pH and RTP intensity of ChOx RTP QDs; (D) Relation between ChOx concentration and RTP intensity of ChOx RTP QDs. (λex=295 nm,λem=585 nm)
Fig.3 (A) UV spectra of MPA-capped Mn-ZnS QDs (a), ChOx RTP QDs (b) and ChOx (c); (B) Maximum excitation peak (a) and maximum emission peak (b) of ChOx RTP QDs; (C) Phosphorescence lifetime of ChOx RTP QDs; (D) TEM image of ChOx RTP QDs
Fig.4 (A) Variation spectra of RTP intensity of ChOx RTP QDs with the increase of choline chloride concentration (0, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 10, 20, 30 and 40 mmol/L). Insets: plot of ΔRTP/RTP0vs.reciprocal concentration and linear fitting; (B) Standard curve of choline chloride detection based on ChOx RTP QDs; (C) Influences of pH on ΔRTP/RTP0; (D) Influences of temperature on ΔRTP/RTP0
共存物质 Co?existing substance | 共存物质浓度/氯化胆碱浓度 c(Co?existing substance)/c(choline) | RTP变化率 Change of the RTP intensity/% |
---|---|---|
钾离子 K+ | 80 | -4.7 |
钠离子 Na+ | 300 | 2.6 |
钙离子 Ca2+ | 10 | -4.2 |
镁离子 Mg2+ | 8 | 3.9 |
锌离子 Zn2+ | 0.06 | 4.9 |
亚铁离子 Fe2+ | 0.0004 | -4.6 |
锰离子 Mn2+ | 0.005 | -2.7 |
葡萄糖 Glucose | 80 | -5.3 |
丙氨酸 Alanine | 6 | -2.9 |
脯氨酸 Proline | 0.05 | 5.6 |
赖氨酸 Lysine | 0.05 | -3.1 |
谷胱甘肽 Glutathione | 0.05 | -4.1 |
半胱氨酸 Cysteine | 0.0005 | 2.8 |
Table 1 Effect of co?existing substance on the RTP intensity of 0.1 mmol/L choline
共存物质 Co?existing substance | 共存物质浓度/氯化胆碱浓度 c(Co?existing substance)/c(choline) | RTP变化率 Change of the RTP intensity/% |
---|---|---|
钾离子 K+ | 80 | -4.7 |
钠离子 Na+ | 300 | 2.6 |
钙离子 Ca2+ | 10 | -4.2 |
镁离子 Mg2+ | 8 | 3.9 |
锌离子 Zn2+ | 0.06 | 4.9 |
亚铁离子 Fe2+ | 0.0004 | -4.6 |
锰离子 Mn2+ | 0.005 | -2.7 |
葡萄糖 Glucose | 80 | -5.3 |
丙氨酸 Alanine | 6 | -2.9 |
脯氨酸 Proline | 0.05 | 5.6 |
赖氨酸 Lysine | 0.05 | -3.1 |
谷胱甘肽 Glutathione | 0.05 | -4.1 |
半胱氨酸 Cysteine | 0.0005 | 2.8 |
样品 Sample | 样品中氯化胆碱浓度 Concentration of choline chloride in the sample c/(mmol·L-1) | 氯化胆碱添加浓度 Choline chloride addition concentration c/(mmol·L-1) | 检测浓度 Detection concentration c/(mmol·L-1) | 回收率 Rate of recovery/% |
---|---|---|---|---|
人尿液 Urine | 0 | 0.1 | 0.092±0.003 | 92±3 |
0 | 1 | 0.88±0.06 | 88±6 | |
0 | 10 | 9.5±0.4 | 95±4 |
Table 2 Recovery for the determination of choline chloride in real samples (n = 3)
样品 Sample | 样品中氯化胆碱浓度 Concentration of choline chloride in the sample c/(mmol·L-1) | 氯化胆碱添加浓度 Choline chloride addition concentration c/(mmol·L-1) | 检测浓度 Detection concentration c/(mmol·L-1) | 回收率 Rate of recovery/% |
---|---|---|---|---|
人尿液 Urine | 0 | 0.1 | 0.092±0.003 | 92±3 |
0 | 1 | 0.88±0.06 | 88±6 | |
0 | 10 | 9.5±0.4 | 95±4 |
1 | ELAHI N, KAMALI M, BAGHERSAD M H, et al. A fluorescence nano-biosensors immobilization on iron (MNPs) and gold (AuNPs) nanoparticles for detection of Shigella spp[J]. Mater Sci Eng C, 2019, 105: 110113. |
2 | OGI H, IWAGAMI S, NAGAKUBO A, et al. Nano-plate biosensor array using ultrafast heat transport through proteins[J]. Sens Actuators B: Chem, 2019, 278: 15-20. |
3 | DERVISEVIC M, ALBA M, PRIETO-SIMON B, et al. Skin in the diagnostics game: wearable biosensor nano- and microsystems for medical diagnostics[J]. Nano Today, 2020, 30: 100828. |
4 | LI G, WU Y, LI Y, et al. Early stage detection of Staphylococcus epidermidis biofilm formation using MgZnO dual-gate TFT biosensor[J]. Biosens Bioelectron, 2020, 151: 111993. |
5 | BALACONIS M K, BILLINGSLEY K, DUBACH J M, et al. The design and development of fluorescent nano-optodes for in vivo glucose monitoring[J]. J Diabetes Sci Technol, 2011, 5(1): 68-75. |
6 | KUANG H, ZHAO Y, MA W, et al. Recent developments in analytical applications of quantum dots[J]. Trends Anal Chem, 2011, 30(10): 1620-1636. |
7 | ZHANG J, ZHU A, ZHAO T, et al. Glucose oxidase-directed, instant synthesis of Mn-doped ZnS quantum dots in neutral media with retained enzymatic activity: mechanistic study and biosensing application[J]. J Mater Chem B, 2015, 3(29): 5942-5950. |
8 | WU P, ZHAO T, ZHANG J, et al. Analyte-activable probe for protease based on cytochrome C-capped Mn: ZnS quantum dots[J]. Anal Chem, 2014, 86(20): 10078-10083. |
9 | WU P, ZHAO T, TIAN Y, et al. Protein-directed synthesis of Mn-doped ZnS quantum dots: adual-channel biosensor for two proteins[J]. Chem Eur J, 2013, 19(23): 7473-7479. |
10 | WU P, HE Y, WANG H F, et al. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids[J]. Anal Chem, 2010, 82(4): 1427-1433. |
11 | MIAO Y, SUN X, LV J, et al. Preparation of single-stranded DNA-templated room-temperature phosphorescent quantum dots and their application for mercury(Ⅱ) detection in environmental and biological fluids[J]. Anal Chem, 2019, 91(8): 5036-5042. |
12 | MIAO Y, SUN X, LV J, et al. Phosphorescent mesoporous surface imprinting microspheres: preparation and application for transferrin recognition from biological fluids[J]. ACS Appl Mater Interfaces, 2018, 11(2): 2264-2272. |
13 | MIAO Y, LV J, YAN G. Hybrid detection of target sequence DNA based on phosphorescence resonance energy transfer[J]. Biosens Bioelectron, 2017, 94: 263-270. |
14 | MIAO Y, LV J, LI Y, et al. Construction of biomolecular sensors based on quantum dots[J]. RSC Adv, 2016, 6(110): 109009-109022. |
15 | HE Y, WANG H F, YAN X P. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids[J]. Anal Chem, 2008, 80(10): 3832-3837. |
16 | MIAO Y, YANG M, YAN G. Self-assembly of phosphorescent quantum dots/boronic-acid-substituted viologen nanohybrids based on photoinduced electron transfer for glucose detection in aqueous solution[J]. RSC Adv, 2016, 6(11): 8588-8593. |
17 | SOTELO-GONZALEZ E, FERNANDEZ-ARGÜELLES M T, COSTA-FERNANDEZ J M, et al. Mn-doped ZnS quantum dots for the determination of acetone by phosphorescence attenuation [J]. Anal Chim Acta, 2012, 712: 120-126. |
18 | WU P, ZHANG J, WANG S, et al. Sensing during in situ growth of Mn-doped ZnS QDs: a phosphorescent sensor for detection of H2S in biological samples[J]. Chem Eur J, 2014, 20(4): 952-956. |
19 | MIAO Y, ZHANG Z, GONG Y, et al. Self-assembly of manganese doped zinc sulfide quantum dots/CTAB nanohybrids for detection of rutin[J]. Biosens Bioelectron, 2014, 52: 271-276. |
20 | WANG H F, WU Y Y, YAN X P. Room-temperature phosphorescent discrimination of catechol from resorcinol and hydroquinone based on sodium tripolyphosphate capped Mn-doped ZnS quantum dots[J]. Anal Chem, 2013, 85(3): 1920-1925. |
21 | MIAO Y, ZHANG Z, GONG Y, et al. Phosphorescent quantum dots/doxorubicin nanohybrids based on photoinduced electron transfer for detection of DNA[J]. Biosens Bioelectron, 2014, 59: 300-306. |
22 | MIAO Y, LI Y, ZHANG Z, et al. “Turn off-on” phosphorescent biosensors for detection of DNA based on quantum dots/acridine orange[J]. Anal Biochem, 2015, 475: 32-39. |
23 | LV J, MIAO Y, YANG J, et al. A DNA probe based on phosphorescent resonance energy transfer for detection of transgenic 35S promoter DNA[J]. Biosens Bioelectron, 2017, 91: 560-565. |
24 | 吴鹏, 张金懿, 严秀平. 基于Mn掺杂ZnS量子点的室温磷光传感应用的研究进展[J]. 分析化学, 2017, 45(12): 1831-1837. |
WU P, ZHANG J Y, YAN X P. Progress of room temperature phosphorescent sensing application based on manganese-doped zinc sulfide quantum dots[J]. Chinese J Anal Chem, 2017, 45(12): 1831-1837. | |
25 | 杨琪, 苗艳明, 李艳, 等. 基于室温磷光量子点/硼酸基联吡啶盐纳米复合材料检测果[J]. 分析化学, 2017, 45(11): 1606-1612. |
YANG Q, MIAO Y M, LI Y, et al. Synthesis of quantum dot /boronic acid-substituted bipyridinium salt nanohybrids as room-temperature phosphorescence probe for fructose detection[J]. Chinese J Anal Chem, 2017, 45(11): 1606-1612. | |
26 | 秦晋. 磷光量子点传感器的构建及水环境污染物和医药生物分子检测研究[D]. 临汾: 山西师范大学, 2019. |
QIN J. Construction phosphorescent quantum dot sensors and detection of wate environmental contaminants and biomolecules[D]. Linfen: Shanxi Normal University, 2019. | |
27 | MIAO Y. Application of BSA-bioconjugated phosphorescence nanohybrids in protein detection in biofluids[J]. RSC Adv, 2015, 5: 76804-76812. |
28 | CAO L, ZHANG J, REN S, et al. Luminescence enhancement of core-shell ZnS:Mn/ZnS nanoparticles[J]. Appl Phys Lett, 2002, 80(23): 4300-4302. |
29 | YILDIZ I, TOMASULO M, RAYMO F M. A mechanism to signal receptor-substrate interactions with luminescent quantum dots[J]. Proc Natl Acad Sci, 2006, 103(31): 11457-11460. |
30 | CHUNG J H, AH C S, JANG D J. Formation and distinctive decay times of surface- and lattice-bound Mn2+ impurity luminescence in ZnS nanoparticles[J]. J Phys Chem B, 2001, 105(19): 4128-4132. |
31 | JONES R M, BERGSTEDT T S, MCBRANCH D W, et al. Tuning of superquenching in layered and mixed fluorescent polyelectrolytes[J]. J Am Chem Soc, 2001, 123(27): 6726-6727. |
32 | MURPHY C B, ZHANG Y, TROXLER T, et al. Probing förster and dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors[J]. J Phys Chem B, 2004, 108(5): 1537-1543. |
33 | BAPTISTA M S, INDIG G L. Effect of BSA binding on photophysical and photochemical properties of triarylmethane dyes[J]. J Phys Chem B, 1998, 102(23): 4678-4688. |
34 | CAO L, YE J, TONG L, et al. a new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing[J]. Chem Eur J, 2008, 14: 9633-9640. |
[1] | XIAO Di,ZHENG Wang,WEI Xiaoyu,LANG Jian,GAO Shuangqiu,LYU Chengwei. Choline Chloride Promoted Synthesis of Coumarin-3-carboxylic Acids [J]. Chinese Journal of Applied Chemistry, 2017, 34(11): 1295-1300. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 479
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 459
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||