1 |
ARIC A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat Mater, 2005, 4(5): 366-377.
|
2 |
STEELE B C H, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.
|
3 |
BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nat Mater, 2011, 11(1): 19-29.
|
4 |
LIM B, JIANG M, YU T, et al. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties[J]. Nano Res,2010, 3(2): 69-80.
|
5 |
CHEN C, KANG Y, HUO Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339.
|
6 |
DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51.
|
7 |
AIJAZ A, FUJIWARA N, XU Q. From metal-organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction[J]. J Am Chem Soc, 2014, 136(19): 6790-6793.
|
8 |
HUANG G, YANG L, MA X, et al. Metal-organic framework-templated porous carbon for highly efficient catalysis: the critical role of pyrrolic nitrogen species[J]. Chem Eur J, 2016, 22(10): 3470-3477.
|
9 |
FENG X, DING X, JIANG D. Covalent organic frameworks[J]. Chem Soc Rev, 2012, 41(18): 6010-6022.
|
10 |
DEBLASE C R, SILBERSTEIN K E, TRUONG T T, et al. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage[J]. J Am Chem Soc, 2013, 135(45): 16821-16824.
|
11 |
LIANG R R, QI Q Y, ZHAO X, et al. A study on constitutional isomerism in covalent organic frameworks: controllable synthesis, transformation, and distinct difference in properties[J]. CCS Chem, 2020, 2(2): 139-145.
|
12 |
王志涛, 李辉, 颜士臣, 等. 一种沿骨架进行质子传导的二维共价有机框架的合成[J]. 化学学报, 2020, 78(1): 63-68.
|
|
WANG Z T, LI H, YAN S C, et al. Synthesis of a two-dimensional covalent organic framework with the ability of conducting proton along skeleton[J]. Acta Chim Sin, 2020, 78(1): 63-68.
|
13 |
李闪闪, 赵文娟, 李辉, 等. 偶氮苯功能化的光响应共价有机框架材料[J]. 高等学校化学学报, 2020, 41(6): 1384-1390.
|
|
LI S S, ZHAO W J, LI H, et al. A photoresponsive azobenzene-functionalized covalent organic framework[J]. Chem J Chinese Univ, 2020, 41(6): 1384-1390.
|
14 |
BERTRAND G H V, MICHAELIS V K, ONG T C, et al. Thiophene-based covalent organic frameworks[J]. P Natl Acad Sci, 2013, 110(13): 4923.
|
15 |
常建红, 徐国杰, 李辉, 等. 基于醌基的共价有机框架用于电催化析氧反应[J]. 高等学校化学学报, 2020, 41(7): 1609-1614.
|
|
CHANG J H, XU G J, LI H, et al. Quinone-based covalent organic frameworks for efficient oxygen evolution reaction[J]. Chem J Chinese Univ, 2020, 41(7): 1609-1614.
|
16 |
王禹婷, 杨天怡, 章应辉. 卟啉框架材料在光催化领域的应用[J]. 应用化学, 2020, 37(6): 611-619.
|
|
WANG Y T, YANG T Y, ZHANG Y H. Application of porphyrin-based framework materials on photocatalysis[J]. Chinese J Appl Chem, 2020, 37(6): 611-619.
|
17 |
AUWÄRTER W, ÉCIJA D, KLAPPENBERGER F, et al. Porphyrins at interfaces[J]. Nat Chem, 2015, 7(2): 105-120.
|
18 |
COLLMAN J P, FU L, HERRMANN P C, et al. A functional model of cytochrome oxidase: thermodynamic implications[J]. Angew Chem Int Ed, 1998, 37(24): 3397-3600.
|
19 |
FAN S, WANG Z, LI C, et al. Self-assembly of coil-rod-coil triblock copolymers depending on lateral methyl groups at the interface of rod and coil segments[J]. Macro Res, 2015, 23(10): 909-915.
|
20 |
LU S, HU Y, WAN S, et al. Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications[J]. J Am Chem Soc, 2017, 139(47): 17082-17088.
|
21 |
XU N, DIAO Y, QIN X, et al. Donor-acceptor covalent organic frameworks of nickel(II) porphyrin for selective and efficient CO2 reduction into CO[J]. Dal Trans, 2020, 49(44): 15587-15591.
|
22 |
Materials Studio ver. 7.0; Accelrys Inc.: San Diego, CA.[CP].https://www.3ds.com/products-services/biovia/products/molecular-modeing-simulation/biovia-materials-studio/.
|