[1] CAO J, ZHANG N R, WANG S M, et al. Researching the crystal phase effect on gas sensing performance in In2O3 nanofibers[J]. Sens Actuators B: Chem, 2020, 305: 127475. [2] DU H Y, YANG W, YI W C, et al. Oxygen-plasma-assisted enhanced acetone-sensing properties of ZnO nanofibers by electrospinning[J]. ACS Appl Mater Interfaces, 2020, 12(20): 23084-23093. [3] ZHAO D, ZHANG X F, SUI L L, et al. C-doped TiO2 nanoparticles to detect alcohols with different carbon chains and their sensing mechanism analysis[J]. Sens Actuators B: Chem, 2020, 312: 127942. [4] TIAN K, WANG X X, YU Z Y, et al. Hierarchical and hollow Fe2O3 nanoboxes derived from metal-organic frameworks with excellent sensitivity to H2S[J]. ACS Appl Mater Interfaces, 2017, 9(35): 29669-29676. [5] XU S, XU Y, ZHAO H, et al. Sensitive gas-sensing by creating adsorption active sites: coating an SnO2 layer on triangle arrays[J]. ACS Appl Mater Interfaces, 2018, 10(34): 29092-29099. [6] SUI L L, ZHANG X F, CHENG X L, et al. Au-loaded hierarchical MoO3 hollow spheres with enhanced gas sensing performance for the detection of BTX (benzene, toluene, and xylene) and the sensing mechanism[J]. ACS Appl Mater Interfaces, 2017, 9(2): 1661-1670. [7] 梁继然, 张叶, 杨然, 等. VO2(B)/ZnO异质复合纳米棒结构的室温NH3敏感性能研究[J]. 无机材料学报, 2018, 33(12): 1323-1329. LIANG J R, ZHANG Y, YANG R, et al. Room-temperature NH3 gas sensing property of VO2(B)/ZnO hierarchical heterogeneous composite with nanorod structure[J]. J Inorg Mater, 2018, 33(12): 1323-1329. [8] AZIZ A, TIWALE N, HODGE S A, et al. Core-shell electrospun polycrystalline ZnO nanofibers for ultrasensitive NO2 gas sensing[J]. ACS Appl Mater Interfaces, 2018, 10(50): 43817-43823. [9] 杜海英, 姚朋军, 王兢, 等. 异质复合结构纳米纤维SnO2/ZnO的制备及其气敏特性研究[J]. 无机材料学报, 2018, 33(4): 453-461. DU H Y, YAO P J, WANG J, et al. Preparation and gas sensing property of SnO2/ZnO composite hetero-nanofibers using two-step method[J]. J Inorg Mater, 2018, 33(4): 453-461. [10] PAN Z Z, SUN F Q, ZHU X M, et al. Electrodeposition-based in situ construction of a ZnO-ordered macroporous film gas sensor with enhanced sensitivity[J]. J Mater Chem A, 2019, 7(3): 1287-1299. [11] SUI L L, YU T T, ZHAO D, et al. In situ deposited hierarchical CuO/NiO nanowall arrays film sensor with enhanced gas sensing performance to H2S[J]. J Hazard Mater, 2020, 385: 121570. [12] YANG H Y, CHENG X L, ZHANG X F, et al. A novel sensor for fast detection of triethylamine based on rutile TiO2 nanorod arrays[J]. Sens Actuators B: Chem, 2014, 205: 322-328. [13] YU T T, CHENG X L, ZHANG X F, et al. Highly sensitive H2S detection sensors at low temperature based on hierarchically structured NiO porous nanowall arrays[J]. J Mater Chem A, 2015, 3(22): 11991-11999. [14] LI Z J, WANG N N,LIN Z J, et al. Room-temperature high-performance H2S sensor based on porous CuO nanosheets prepared by hydrothermal method[J]. ACS Appl Mater Interfaces, 2016, 8(32): 20962-20968. [15] WANG P, ZHENG Z K, CHENG X L, et al. Ionic liquid-assisted synthesis of α-Fe2O3 mesoporous nanorod arrays and their excellent trimethylamine gas-sensing properties for monitoring fish freshness[J]. J Mater Chem A, 2017, 5(37): 19846-19856. [16] HUANG L M, FAN H Q. Room-temperature solid state synthesis of ZnO/α-Fe2O3 hierarchical nanostructures and their enhanced gas-sensing properties[J]. Sens Actuators B: Chem, 2012, 171/172: 1257-1263. [17] SONG X P, LI L, CHEN X, et al. Enhanced triethylamine sensing performance of α-Fe2O3 nanoparticle/ZnO nanorod heterostructures[J]. Sens Actuators B: Chem, 2019, 298: 126917. [18] ZHANG B W, FU W Y, MENG X W, et al. Synthesis and enhanced gas sensing properties of flower-like ZnO/α-Fe2O3 core-shell nanorods[J]. Ceram Int, 2017, 43(8): 5934-5940. [19] LI Y G, QIAO L,YAN D, et al. Preparation of Au-sensitized 3D hollow SnO2 microspheres with an enhanced sensing performance[J]. J Alloys Compd, 2014, 586: 399-403. [20] LIANG Y C, HUNG C S. Design of hydrothermally derived Fe2O3 rods with enhanced dual functionality via sputtering decoration of a thin ZnO coverage layer[J]. ACS Omega, 2020, 5(26): 16272-16283. [21] CHEN Y, LI H, MA Q, et al. ZIF-8 derived hexagonal-like α-Fe2O3/ZnO/Au nanoplates with tunable surface heterostructures for superior ethanol gas-sensing performance[J]. Appl Surf Sci, 2018, 439: 649-659. [22] ZHANG R, ZHANG T, ZHOU T T, et al. Fast and real-time acetone gas sensor using hybrid ZnFe2O4/ZnO hollow spheres[J]. RSC Adv, 2016, 6(71): 66738-66744. [23] SUI L L, SONG X X, CHENG X L, et al. An ultraselective and ultrasensitive TEA sensor based on α-MoO3 hierarchical nanostructures and the sensing mechanism[J]. CrystEngComm, 2015, 17(34): 6493-6503. [24] ZHANG R, ZHOU T, WANG L, et al. The Synthesis and fast ethanol sensing properties of core-shell SnO2@ZnO composite nanospheres using carbon spheres as templates[J]. New J Chem, 2016, 40: 6796-6802. [25] ZHOU L K, ZENG W, LI Y. A facile one-step hydrothermal synthesis of a novel NiO/ZnO nanorod composite and its enhanced ethanol sensing property[J]. Mater Lett, 2019, 254: 92-95. [26] HUI G Z, ZHU M Y, YANG X L, et al. Highly sensitive ethanol gas sensor based on CeO2/ZnO binary heterojunction composite[J]. Mater Lett, 2020, 278: 128453. [27] LI B, LIU J Y, LIU Q, et al. Core-shell structure of ZnO/Co3O4 composites derived from bimetallicorganic frameworks with superior sensing performance for ethanol gas[J]. Appl Surf Sci, 2019, 475: 700-709. [28] ZHOU X, XIAO Y, WANG M, et al. Highly enhanced sensing properties for ZnO nanoparticle-decorated round-edged α-Fe2O3 hexahedrons[J]. ACS Appl Mater Interfaces, 2015, 7(16): 8743-8749. [29] WANG Y, LIU C Y, WANG Z, et al. Sputtered SnO2: NiO thin films on self-assembled Au nanoparticle arrays for mems compatible NO2 gas sensors[J]. Sens Actuators B: Chem, 2019, 278: 28-38. [30] MENG D, LIU D Y, WANG G S, et al. Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets[J]. Sens Actuators B: Chem, 2018, 273: 418-428. |