[1] NAKADA N, SHINOHARA H, MURATA A, et al. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant [J]. Water Res, 2007, 41(19):4373-82. [2] 周雪飞,张亚雷,代朝猛. 城市污水处理系统去除药物和个人护理用品(PPCPs)的机理研究[J]. 环境保护科学, 2009, 35(2):15-17. ZHOU X F, ZHANG Y L, DAI C M. Studies on the removal mechanism of PPCPs in the municipal wastewater treatment[J]. Environ Prot Sci, 2009, 35(2):15-17. [3] AHMED M B, ZHOU J L, NGO H H, et al. Adsorptive removal of antibiotics from water and wastewater: progress and challenges[J]. Sci Total Environ, 2015, 532:112-26. [4] 中科院发布抗生素污染地图[J]. 饲料与畜牧, 2017(2):18-20. Chinese academy of sciences released antibiotic pollution map[J]. Feed Husb, 2017(2):18-20. [5] 张岩. 制药废水处理技术研究进展[J]. 工业水处理, 2018, 38(5):5-9. ZHANG Y. Research progress in the treatment technologies of pharmaceutical wastewater[J]. Ind Water Treat, 2018, 38(5):5-9. [6] YANG H, LI G, AN T, et al. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2:a case of sulfa drugs [J]. Catal Today, 2010, 153(3/4):200-207. [7] SONG Y, TIAN J, GAO S, et al. Photodegradation of sulfonamides by g-C3N4 under visible light irradiation:effectiveness, mechanism and pathways[J]. Appl Catal B, 2017, 210:88-96. [8] SEEMA G, MOHIT Y, AMRISH C, et al. A review on BiOX (X=Cl, Br and I) nano-/microstructures for their photocatalytic applications[J]. J Nanosci Nanotechnol, 2019,19(1):280-294. [9] WANG Z W, CHENG M, HUANG D L, et al. Multiply structural optimized strategies for bismuth oxyhalide photocatalysis and their environmental application[J]. Chem Eng J, 2020, 374:1025-1045. [10] FENG H F, XU Z F, WANG L, et al. Modulation of photocatalytic properties by strain in 2D BiOBr nanosheets[J]. ACS Appl Mater Interfaces, 2015, 7(50):27592-27596. [11] QIN X Y, CHENG H F, WANG W J, et al. Three dimensional BiOX (X=Cl, Br and I) hierarchical architectures:facile ionic liquid-assisted solvothermal synthesis and photocatalysis towards organic dye degradation[J]. Mater Lett, 2013, 100:285-288. [12] ZHANG T X, CHANG F, QI Y F, et al. A facile one-pot and alkali-free synthetic procedure for binary SnO2/g-C3N4 composites with enhanced photocatalytic behavior[J]. Mater Sci Semicond Process, 2020, 115:105112. [13] GAO S, GUO C, LV J, et al. A novel 3D hollow magnetic Fe3O4/BiOI heterojunction with enhanced photocatalytic performance for bisphenol A degradation[J]. Chem Eng J, 2017, 307:1055-1065. [14] GUO C, HE Y, DU P, et al. Novel magnetically recoverable BiOBr/iron oxides heterojunction with enhanced visible light-driven photocatalytic activity[J]. App Surf Sci, 2014, 320:383-390. [15] LIANG Y L, DAI Y Z. Direct Z-scheme hierarchical WO3/BiOBr with enhanced photocatalytic degradation performance under visible light[J]. Appl Surf Sci, 2020, 509:145201. [16] ZHANG B F, ZHANG M T, ZHANG L, et al. PVP surfactant-modified flower-like BiOBr with tunable bandgap structure for efficient photocatalytic decontamination of pollutants[J]. Appl Surf Sci, 2020, 530:147233. [17] LI S Z, HAN Q F, JIA X M, et al. Room-temperature one-step synthesis of tube-like S-scheme BiOBr/BiO (HCOO)Br-x heterojunction with excellent visible-light photocatalytic performance[J]. Appl Surf Sci, 2020, 530:147208. [18] JIANG Q, JI M X, CHEN R, et al. Ionic liquid induced mechanochemical synthesis of BiOBr ultrathin nanosheets at ambient temperature with superior visible-light-driven photocatalysis[J]. J Colloid Interface Sci, 2020, 574:131-139. [19] GEN A B, XU L J, GAN L, et al. Using wood flour waste to produce biochar as the support to enhance the visible-light photocatalytic performance of BiOBr for organic and inorganic contaminants removal[J]. Chemosphere, 2020, 250:126291. [20] MA R, ZHANG S, WEN T, et al. A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants[J]. Catal Today, 2019, 335:20-30. [21] WEN X J, ZHANG C, NIU C G, et al. Highly enhanced visible light photocatalytic activity of CeO2 through fabricating a novel p-n junction BiOBr/CeO2[J]. Catal Commun, 2017, 90:51-55. [22] ZHANG S, WANG D. Preparation of novel BiOBr/CeO2 heterostructured photocatalysts and their enhanced photocatalytic activity[J]. RSC Adv, 2015, 5(113):93032-93040. [23] YU L, PENG R, CHEN L, et al. Ag supported on CeO2 with different morphologies for the catalytic oxidation of HCHO[J]. Chem Eng J, 2018, 334:2480-2487. [24] CAO L, MA D, ZHOU Z, et al. Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation[J]. Chem Eng J, 2019, 368:212-222. [25] YE S, QIU L G, YUAN Y P, et al. Facile fabrication of magnetically separable graphitic carbon nitride photocatalysts with enhanced photocatalytic activity under visible light[J]. J Mater Chem A, 2013, 1(9):3008-3015. [26] ZOU W, SHAO Y, PU Y, et al. Enhanced visible light photocatalytic hydrogen evolution via cubic CeO2 hybridized g-C3N4 composite[J]. Appl Catal B, 2017, 218:51-59. [27] SHARMA V K, MISHRA S K, NESNAS N. Oxidation of sulfonamide antimicrobials by ferrate (VI) [FeVIO2-4][J]. Environ Sci Technol, 2006, 40(23):7222-7227. [28] BOREEN A L, ARNOLD W A, MCNEILL K. Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups:identification of an SO2 extrusion photoproduct[J]. Environ Sci Technol, 2005, 39(10):3630-3638. [29] QU J N, DU Y, FENG Y B, et al.Visible-light-responsive K-doped g-C3N4/BiOBr hybrid photocatalyst with highly efficient degradation of Rhodamine B and tetracycline[J]. Mater Sci Semicond Process, 2020, 112:105023. [30] PUDUKUDY M, JIA X M, et al. Influence of CeO2 loading on the structural, textural, optical and photocatalytic properties of single-pot sol-gel derived ultrafine CeO2/TiO2 nanocomposites for the efficient degradation of tetracycline under visible light irradiation[J]. Mater Sci Semicond Process, 2020, 108: 104891. |