[1] CHEN G Y, ROY I, YANG C H, et al. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy[J]. Chem Rev, 2016, 116: 2826–2885. [2] SINGHAL S, NIE S M, WANG M. Nanotechnology applications in surgical oncology[J]. Annu Rev Med, 2010, 61: 359-373. [3] HU C L, CAI L H, LIU S N, et al. Copper-doped nanoscale covalent organic polymer for augmented photo/chemodynamic synergistic therapy and immunotherapy[J]. Bioconjugate Chem, 2020, 31: 1661-1670. [4] YANG K, ZHANG S A, ZHANG G X, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy[J]. Nano Lett, 2010, 10: 3318-3323. [5] BERLANDA J, KIESSLICH T, ENGELHARDT V, et al.Comparative in vitro study on the characteristics of different photosensitizers employed in PDT[J]. J Photochem Photobiol B, 2010, 100: 173-180. [6] BOKARE A, CHOI W. Review of iron-free fenton-like systems for activating H2O2 in advanced oxidation processes[J]. J Hazard Mater, 2014, 275: 121-135. [7] YU J, ZHAO F, GAO W, et al. Magnetic reactive oxygen species nanoreactor for switchable magnetic resonance imaging guided cancer therapy based on pH-sensitive Fe5C2@Fe3O4 nanoparticles[J]. ACS Nano, 2019, 13: 10002-10014. [8] ZHU H M, CAO G D, QIANG C, et al. Hollow ferric-tannic acid nanocapsules with sustained O2 and ROS induction for synergistic tumor therapy[J]. Biomater Sci, 2020, 8: 3844-3855. |