[1] | Nakano M,Tanaka M,Kuromatsu R,et al. Sorafenib for the Treatment of Advanced Hepatocellular Carcinoma with Extrahepatic Metastasis:A Prospective Multicenter Cohort Study[J]. Cancer Med-US,2015,4(12):1836-1843. | [2] | Tom G,Philip S,Isaac R,et al. Preparation of an Efficient and Safe Polymeric-Magnetic Nanoparticle Delivery System for Sorafenib in Hepatocellular Carcinoma[J]. Life Sci,2018,206:10-21. | [3] | Kalyane D,Raval N,Maheshwari R,et al. Employment of Enhanced Permeability and Retention Effect(EPR):Nanoparticle-Based Precision Tools for Targeting of Therapeutic and Diagnostic Agent in Cancer[J]. Mater Sci Eng C,2019,98:1252-1276. | [4] | Chao L,Yu C,Yi X,et al. Nanoparticle-Mediated Internal Radioisotope Therapy to Locally Increase the Tumor Vasculature Permeability for Synergistically Improved Cancer Therapies[J]. Biomaterials,2019,197:368-379. | [5] | HAN Xu,DING Guanyu,DONG Qing,et al. Research Progress of Nano-Gene Carriers Based on Liposomes[J]. Chinese J Appl Chem,2018,35(7):735-744(in Chinese). 韩旭,丁冠宇,董青,等. 基于脂质体的纳米基因载体的研究进展[J]. 应用化学,2018,35(7):735-744. | [6] | Sawant R R,Torchilin V P.Challenges in Development of Targeted Liposomal Therapeutics[J]. AAPS J,2012,14(2):303-315. | [7] | Singh B,Jang Y,Maharjan S,et al. Combination Therapy with Doxorubicin-Loaded Galactosylated Poly(ethyleneglycol)-Lithocholic Acid to Suppress the Tumor Growth in an Orthotopic Mouse Model of Liver Cancer[J]. Biomaterials,2017,116:130-144. | [8] | Bertrand N,Wu J,Xu X Y,et al. Cancer Nanotechnology:The Impact of Passive and Active Targeting in the Era of Modern Cancer Biology[J]. Adv Drug Deliver Rev,2014,66:2-25. | [9] | Saei A A,Yazdani M,Lohse S E,et al. Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity[J]. Chem Mater,2017,29(16):6578-6595. | [10] | Vijayan V,Uthaman S,Park I K.Cell Membrane-Camouflaged Nanoparticles:A Promising Biomimetic Strategy for Cancer Theragnostics[J]. Polymers(Basel Switz),2018,10(9):1374-1399. | [11] | Zhen X,Cheng P,Pu K.Recent Advances in Cell Membrane-Camouflaged Nanoparticles for Cancer Phototherapy[J]. Small,2019,15(1):1804105. | [12] | Sun H P,Su J H,Meng Q S,et al. Cancer-Cell-Biomimetic Nanoparticles for Targeted Therapy of Homotypic Tumors[J]. Adv Mater,2016,28(43):9581-9588. | [13] | Zhu J Y,Zheng D W,Zhang M K,et al. Preferential Cancer Cell Self-recognition and Tumor Self-targeting by Coating Nanoparticles with Homotypic Cancer Cell Membrane[J]. Nano Lett,2016,16(9):5895-5901. | [14] | Lv Y L,Liu M,Zhang Y,et al. Cancer Cell Membrane-Biomimetic Nanoprobes with Two-Photon Excitation and Near-Infrared Emission for Intravital Tumor Fluorescence Imaging[J]. ACS Nano,2018,12(2):1350-1358. | [15] | Ma K,Fu D,Liu Y J,et al. Cancer Cell Targeting, Controlled Drug Release and Intracellular Fate of Biomimetic Membrane-Encapsulated Drug-Loaded Nano-Graphene Oxide Nanohybrids[J]. J Mater Chem B,2018,6(31):5080-5090. | [16] | Jin J F,Krishnamachary B,Barnett J D,et al. Human Cancer Cell Membrane-Coated Biomimetic Nanoparticles Reduce Fibroblast-Mediated Invasion and Metastasis and Induce T-Cells[J]. ACS Appl Mater Interfaces,2019,11(8):7850-7861. | [17] | Liu C M,Chen G B,Chen H H,et al. Cancer Cell Membrane-Cloaked Mesoporous Silica Nanoparticles with a pH-Sensitive Gatekeeper for Cancer Treatment[J]. Colloids Surf,B,2019,175:477-486. | [18] | Li S Y,Cheng H,Qiu W X,et al. Cancer Cell Membrane-Coated Biomimetic Platform for Tumor Targeted Photodynamic Therapy and Hypoxia-Amplified Bioreductive Therapy[J]. Biomaterials,2017,142:149-161. | [19] | Miao J,Yang X Q,Gao Z,et al. Redox-Responsive Chitosan Oligosaccharide-SS-Octadecylamine Polymeric Carrier for Efficient Anti-Hepatitis B Virus Gene Therapy[J]. Carbohydr Polym,2019,212:215-221. | [20] | Raza A,Hayat U,Rasheed T,et al. Redox-Responsive Nano-Carriers as Tumor-Targeted Drug Delivery Systems[J]. Eur J Med Chem,2018,157:705-715. | [21] | Gilbert H F.Thiol/Disulfide Exchange Equilibria and Disulfide Bond Stability[J]. Method Enzymol,1995,251:8-28. | [22] | ZHANG Yi,WU Lingbo,HU Qian,et al. Functionally Modified Hyperbranched Polyglycerols for Drug Delivery[J]. Chinese J Appl Chem,2015,32(4):367-378(in Chinese). 张奕,巫凌波,胡倩,等. 功能化修饰的超支化聚缩水甘油醚在药物载体领域的应用[J]. 应用化学,2015,32(4):367-378. | [23] | Mo R,Gu Z.Tumor Microenvironment and Intracellular Signal-Activated Nanomaterials for Anticancer Drug Delivery[J]. Mater Today,2016,19(5):274-283. | [24] | Feng S S,Wu Z X,Zhao Z Y,et al. Engineering of Bone- and CD44-Dual-Targeting Redox-Sensitive Liposomes for the Treatment of Orthotopic Osteosarcoma[J]. ACS Appl Mater Interfaces,2019,11(7):7357-7368. | [25] | Zhang L S,Liu Y C,Zhang K,et al. Redox-Responsive Comparison of Diselenide Micelles with Disulfide Micelles[J]. Colloid Polym Sci,2019,297(2):225-238. | [26] | Chen L L,Wang X H,Ji F L,et al. New Bifunctional-Pullulan-Based Micelles with Good Biocompatibility for Efficient Co-delivery of Cancer-Suppressing p53 Gene and Doxorubicin to Cancer Cells[J]. RSC Adv,2015,5(115):94719-94731. |
|